常微分方程I ODE的例子3 生态学模型:Malthus增长模型、Lotka-Volterra模型

本文介绍了常微分方程在数学生态学中的应用,包括Malthus增长模型、Lotka-Volterra模型、Rosenzweig-MacArthur模型以及简易食物链模型。这些模型描述了生物种群的增长、捕食者与被捕食者的关系以及资源限制对种群动态的影响。此外,还提到了流行病的SIR模型,用于分析疾病传播过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常微分方程I ODE的例子3 生态学模型:Malthus增长模型、Lotka-Volterra模型

在数学生态学中,建立常微分方程模型的思路主要就是:
变 化 率 = 输 入 − 输 出 变化率=输入-输出 =

例1 Malthus增长模型
x ( t ) x(t) x(t)表示population of a species at time t,则
x ˙ = r x , r = b − d \dot{x}=rx,r=b-d x˙=rx,r=bd

其中 b b b表示birth rate, d d d表示death rate, r r r表示intrinsic growth rate,这个方程的解是
x ( t ) = x 0 e r ( t − t 0 ) x(t)=x_0e^{r(t-t_0)} x(t)=x0er(tt0)

其中 ( t 0 , x 0 ) (t_0,x_0) (t0,x0)是初值。Malthus的论断是人口增长是等比型的,粮食的增长是等差型的,所以随着时间推移,人均粮食逐渐降低,当人口增长到人均粮食位于养活一个人的最低水平时,社会就陷入了Malthus陷阱,这时的均衡是人口较多,人均粮食刚刚够,要打破这个陷阱,一种可能性是引入新的作物。

例2 Lotka-Volterra模型
Malthus的模型并不能完全cover他的论述,我们可以对他的模型做一些简单修正。Verhulst建立了Logistics Equation,在Malthus增长模型引入了资源约束,从而把种群内竞争引入了模型
x ˙ = r x − a x 2 \dot{x}=rx-ax^2 x˙=rxax2

Lotka-Volterra模型在Logistics Equation的基础上引入了食物链,即同时考虑捕食者与被捕食者的population,并加入交互项表示它们之间的捕食关系:

{ x ˙ = a x − b x y y ˙ = c x y − d y \begin{cases} \dot{x} = ax - bxy \\ \dot{y}=cxy-dy \end{cases} { x˙=axbxyy˙=cxydy

这里的 a a a表示被捕食者的增长率, b b b表示被捕食率, c c c表示捕食者因为捕食获得的population增益, d d d表示捕食者的死亡率;

另一种Lotka-Volterra模型是
{ x ˙ = r x ( 1 − x k ) − b x y y ˙ = c x y − d y \begin{cases} \dot{x} = rx(1-\frac{x}{k})-bxy \\ \dot{y}=cxy-dy \end{cases} { x˙=rx(1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值