立体角(solid angle)这个概念很明显就是平面角向三维的推广,在我长达二十年的学习生涯中我觉得我应该没有正式接触过这个概念,所以上学期在关于辐射的一个公式里看到才会觉得很懵,这一篇就简单总结一下我现在对立体角的认识吧。
立体角的概念
既然立体角是平面角向三维的推广,那么我们先回顾一下平面角的定义。在高一数学必修一以前,我们对角的认识应该还停留在两边夹一尖儿,用量角器能量角的大小的阶段,用量角器量出来的角单位是度。高一数学必修一对平面角的定义是单位圆上对应的一段弧长,以此为基础定义了三角函数,下面的图是维基百科上的:
这种定义可以简单记为,
θ
=
某
个
圆
上
对
应
的
弧
长
/
这
个
的
圆
的
半
径
\theta=某个圆上对应的弧长/这个的圆的半径
θ=某个圆上对应的弧长/这个的圆的半径
它的单位用
r
a
d
rad
rad表示,因为弧长与半径的量纲都是长度,所以平面角是一个无量纲的量。小学数学介绍的理解二维到三维最简单的方法就是把这张圆绕着它的某条直径旋转一周,扫过的部分就变成了一个三维的球,而这段弧就变成了球上的一个区域,圆的半径扫过的部分变成了圆,根据这个思想,平面角推广到立体角就很顺理成章了,用
Ω
\Omega
Ω表示立体角,那么
Ω
=
某
个
球
面
上
对
应
的
一
块
面
积
/
球
半
径
的
平
方
\Omega=某个球面上对应的一块面积/球半径的平方
Ω=某个球面上对应的一块面积/球半径的平方
立体角的单位是球面度,记为 s r sr sr,是单词steradian,因为面积除以半径的平方后单位约掉了,所以球面度也是一个无量纲的量,它就是角度 r a d rad rad的推广。
下面这张图也是维基百科上的,我们可以借此理解一下球面度的含义。假设我们站在半径为 r r r的球的球心观察,不转动脖子可以看到球面上面积为 r 2 r^2 r2的范围,那么我们的视野范围就可以用球面度 r 2 r 2 = 1 s r \frac{r^2}{r^2}=1sr r2r2=1sr来衡量;然后再把自己想象成一只猫头鹰,只要动一动脖子就能看清整个球面,那么我们现在的视野范围就是 4 π r 2 r 2 = 4 π s r \frac{4 \pi r^2}{r^2}=4\pi sr r24πr2=4πsr。
立体角的公式
按照立体角的定义,球坐标系中的立体角公式是最好求的。球坐标系中的面积微元是
d
A
=
(
r
sin
θ
d
ϕ
)
(
r
d
θ
)
=
r
2
sin
θ
d
θ
d
ϕ
dA=(r \sin \theta d \phi)(r d\theta)=r^2 \sin \theta d \theta d\phi
dA=(rsinθdϕ)(rdθ)=r2sinθdθdϕ
所以
d
Ω
=
d
A
r
2
=
sin
θ
d
θ
d
ϕ
d\Omega = \frac{dA}{r^2}=\sin \theta d \theta d \phi
dΩ=r2dA=sinθdθdϕ
当对应面积为
S
S
S时,立体角等于
Ω
=
∬
S
d
Ω
=
∬
S
sin
θ
d
θ
d
ϕ
\Omega = \iint_S d \Omega = \iint_S \sin \theta d \theta d \phi
Ω=∬SdΩ=∬Ssinθdθdϕ
下图也是维基百科的:
在一般情况下,我们需要根据立体角的定义式进行计算:
d
Ω
=
d
A
r
2
d \Omega = \frac{dA}{r^2}
dΩ=r2dA
这里的 A A A是在球面上的投影面积。
例 毕奥-萨伐尔定理可以写成
B
=
I
c
∇
Ω
\textbf B = \frac{I}{c }\nabla \Omega
B=cI∇Ω
证 加‘的
x
′
\textbf x'
x′代表磁场的源(比如小型环形电流)的位置,不加的
x
\textbf x
x代表观察者的位置,加粗的量代表向量,毕奥-萨伐尔定理是
B
=
I
c
∮
C
d
l
′
×
(
x
−
x
′
)
∣
x
−
x
′
∣
3
\textbf B =\frac{I}{c} \oint_C \frac{d \textbf l' \times (\textbf x - \textbf x')}{|\textbf x- \textbf x'|^3}
B=cI∮C∣x−x′∣3dl′×(x−x′)
所以我们只需要计算 ∇ Ω \nabla \Omega ∇Ω并把它与曲线积分比较即可。
根据定义
d
Ω
=
d
A
r
2
d\Omega= \frac{dA}{r^2}
dΩ=r2dA
这里
r
r
r代表磁场的源与观察者之间的距离,
r
2
=
∣
x
−
x
′
∣
2
r^2 = |\textbf x - \textbf x'|^2
r2=∣x−x′∣2
而
d
A
dA
dA代表(观察者向磁场的源的方向看过去的视野范围)在contour
C
C
C围成的曲面上的投影面积,这个曲面的外法向为
n
^
\hat n
n^,因此
d
Ω
=
1
∣
x
−
x
′
∣
2
n
^
⋅
(
x
−
x
′
)
∣
x
−
x
′
∣
d
S
d \Omega = \frac{1}{|\textbf x- \textbf x'|^2} \frac{\hat n \cdot (\textbf x - \textbf x')}{|\textbf x - \textbf x'|}dS
dΩ=∣x−x′∣21∣x−x′∣n^⋅(x−x′)dS
所以
Ω
=
−
∫
S
(
C
)
n
^
⋅
(
x
−
x
′
)
∣
x
−
x
′
∣
3
d
S
\Omega = -\int_{S(C)} \frac{\hat n \cdot (\textbf x - \textbf x')}{|\textbf x- \textbf x'|^3}dS
Ω=−∫S(C)∣x−x′∣3n^⋅(x−x′)dS
S
(
C
)
S(C)
S(C)是强调这是contour
C
C
C围成的曲面,
−
-
−是因为
n
^
\hat n
n^取的外法线。现在我们考虑一下
n
^
d
S
\hat n dS
n^dS,这是contour
C
C
C围成的曲面,而
C
C
C承载的是磁场的源,也就是电流,用
l
′
\textbf l'
l′表示电流方向,也就是
C
C
C的方向,
Ω
=
−
∮
C
−
(
d
x
×
d
l
′
)
⋅
(
x
−
x
′
)
∣
x
−
x
′
∣
3
\Omega=-\oint_C \frac{-(d \textbf x \times d \textbf l') \cdot (\textbf x - \textbf x')}{|\textbf x - \textbf x'|^3}
Ω=−∮C∣x−x′∣3−(dx×dl′)⋅(x−x′)
根据引理1(放在最后证明),
Ω
=
d
x
⋅
∮
C
d
l
′
×
(
x
−
x
′
)
∣
x
−
x
′
∣
3
\Omega= d \textbf x \cdot \oint_C \frac{ d \textbf l' \times (\textbf x - \textbf x')}{|\textbf x - \textbf x'|^3}
Ω=dx⋅∮C∣x−x′∣3dl′×(x−x′)
因此
∇
Ω
=
∮
C
d
l
′
×
(
x
−
x
′
)
∣
x
−
x
′
∣
3
\nabla \Omega = \oint_C \frac{ d \textbf l' \times (\textbf x - \textbf x')}{|\textbf x - \textbf x'|^3}
∇Ω=∮C∣x−x′∣3dl′×(x−x′)
证毕。
引理1
d
x
×
d
l
′
⋅
(
x
−
x
′
)
=
[
d
l
′
×
(
x
−
x
′
)
]
⋅
x
d \textbf x \times d \textbf l' \cdot (\textbf x - \textbf x')=[d \textbf l' \times (\textbf x - \textbf x')]\cdot \textbf x
dx×dl′⋅(x−x′)=[dl′×(x−x′)]⋅x
引入Eddington张量
ϵ
i
j
k
\epsilon_{ijk}
ϵijk,用Einstein求和约定改写左边的式子:
d
x
×
d
l
′
⋅
(
x
−
x
′
)
=
(
ϵ
i
j
k
d
x
j
d
l
j
′
)
(
x
i
−
x
i
′
)
=
−
ϵ
i
j
k
d
l
j
′
(
x
i
−
x
i
′
)
d
x
j
=
ϵ
j
k
i
d
l
j
′
(
x
i
−
x
i
′
)
d
x
j
=
[
d
l
′
×
(
x
−
x
′
)
]
⋅
x
d \textbf x \times d \textbf l' \cdot (\textbf x - \textbf x')=(\epsilon_{ijk} dx_j dl'_j)(x_i-x_i') \\ = -\epsilon_{ijk}d l _j'(x_i-x_i')dx_j \\ = \epsilon_{jki}d l _j'(x_i-x_i')dx_j \\ = [d \textbf l' \times (\textbf x - \textbf x')]\cdot \textbf x
dx×dl′⋅(x−x′)=(ϵijkdxjdlj′)(xi−xi′)=−ϵijkdlj′(xi−xi′)dxj=ϵjkidlj′(xi−xi′)dxj=[dl′×(x−x′)]⋅x