统计推断 完备性与完备统计量的进阶内容
因为这一年来有很多人问统计推断里的完备性到底要怎么理解,和泛函分析里的完备性是不是一回事之类的问题,所以今天结合数理统计学史给大家介绍一下完备性的渊源。我去除了大部分需要测度论的内容,但保留了一些测度论的概念,好让大家知道这篇文章确实是关于高等数理统计的。
完备性的定义
用 P θ P_{\theta} Pθ代表一个分布族,比如 P θ = { N ( θ , 1 ) : θ ∈ R } P_{\theta}=\{N(\theta,1):\theta \in \mathbb{R}\} Pθ={ N(θ,1):θ∈R}就表示方差为1的正态均值分布族,假设随机变量 X ∼ P θ X \sim P_{\theta} X∼Pθ;另外,用 F \mathcal{F} F表示某一类函数的集合。
定义1 完备性(completeness) 称分布族 P θ P_{\theta} Pθ是 F \mathcal{F} F-完备的,如果 ∀ f ∈ F \forall f \in \mathcal{F} ∀f∈F, E θ [ f ( X ) ] = ∫ f ( x ) d P θ ( x ) = 0 E_{\theta}[f(X)]=\int f(x) dP_{\theta}(x)=0 Eθ[f(X)]=∫f(x)dPθ(x)=0对所有 θ ∈ Θ \theta \in \Theta θ∈Θ成立,可以推出 P θ ( f ( X ) = 0 ) = ∫ { x : f ( x ) = 0 } d P θ ( x ) = 1 P_{\theta}(f(X)=0)=\int_{\{x:f(x)=0\}} dP_{\theta}(x)=1 Pθ(f(X)=0)=∫