统计推断 完备性与完备统计量的思想与历史渊源

本文探讨了统计推断中完备性概念的起源,包括Halmos的UMVUE构造方法、Neyman-Pearson引理,以及指数族的完备性条件。通过历史回顾,解释了完备性在统计学中的意义和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为这一年来有很多人问统计推断里的完备性到底要怎么理解,和泛函分析里的完备性是不是一回事之类的问题,所以今天结合数理统计学史给大家介绍一下完备性的渊源。我去除了大部分需要测度论的内容,但保留了一些测度论的概念,好让大家知道这篇文章确实是关于高等数理统计的。

完备性的定义

P θ P_{\theta} Pθ代表一个分布族,比如 P θ = { N ( θ , 1 ) : θ ∈ R } P_{\theta}=\{N(\theta,1):\theta \in \mathbb{R}\} Pθ={ N(θ,1):θR}就表示方差为1的正态均值分布族,假设随机变量 X ∼ P θ X \sim P_{\theta} XPθ;另外,用 F \mathcal{F} F表示某一类函数的集合。

定义1 完备性(completeness) 称分布族 P θ P_{\theta} Pθ F \mathcal{F} F-完备的,如果 ∀ f ∈ F \forall f \in \mathcal{F} fF E θ [ f ( X ) ] = ∫ f ( x ) d P θ ( x ) = 0 E_{\theta}[f(X)]=\int f(x) dP_{\theta}(x)=0 Eθ[f(X)]=f(x)dPθ(x)=0对所有 θ ∈ Θ \theta \in \Theta θΘ成立,可以推出 P θ ( f ( X ) = 0 ) = ∫ { x : f ( x ) = 0 } d P θ ( x ) = 1 P_{\theta}(f(X)=0)=\int_{\{x:f(x)=0\}} dP_{\theta}(x)=1 Pθ(f(X)=0)=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值