激活函数
激活函数的作用是什么?
最主要的是引入了非线性因素,可以提高模型的表达能力。
如果没有激活函数,那么模型就只有线性变换,可想而知线性模型能表达的空间是有限的。而激活函数引入了非线性因素,比线性模型拥有更大的模型空间。
常用的激活函数
Relu,Gelu,leaky relu,softmax,sigmoid,tanh
Relu
引入Relu的原因
第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现 梯度消失 的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的训练。
第三,ReLu会使一部分神经元的输出为0,这样就造成了 网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。网络的稀疏性可以理解为让不同的神经元各司其职。
Relu顺序
一般是卷积-BN-Relu.
Sigmoid:如果先BN再Sigmoid,由于BN后方差接近于1,均值接近于0,使得BN后的数据接近于Sigmoid的线性区域,降低了激活函数的非线性能力,这种情况下建议Sigmoid+BN。
Relu:如果先Relu再BN,Relu后部分神经元已经失活,失活的神经元将对BN的归一化产生影响,这种情况下建议BN+Relu。
relu在零点可导吗,不可导如何进行反向传播?
不可导,人为将梯度规定为0.
import numpy as np
import matplotlib.pyplot as plt
def relu(x):
return np.maximum(0, x)
x = np.linspace(-10, 10, 100)
y = relu(x)
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('ReLU(x)')
plt.title('ReLU Function')
plt.grid()
plt.show()
Gelu
import numpy as np
import matplotlib.pyplot as plt
def gelu(x):
return 0.5 * x * (1 + np.tanh(np.sqrt(2/np.pi) * (x + 0.044715 * np.power(x, 3))))
x = np.linspace(-10, 10, 100)
y = gelu(x)
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('GeLU(x)')
plt.title('GeLU Function')
plt.grid()
plt.show()
leaky relu
优点
该方法与ReLU不同的是在x小于0的时候取f(x) = ax,其中a是一个非常小的斜率(比如0.01)。这样的改进可以使得当x小于0的时候也不会导致反向传播时的梯度消失现象。
缺点
无法避免梯度爆炸的问题。
神经网络不学习\alphaα值。
在求导的时候,两部分都是线性的。
import numpy as np
import matplotlib.pyplot as plt
def leakyrelu(x, alpha=0.01):
return np.maximum(x, alpha * x)
x = np.linspace(-10, 10, 100)
y = leakyrelu(x)
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('LeakyReLU(x)')
plt.title('LeakyReLU Function')
plt.grid()
plt.show()
softmax
sigmoid
如下图所示,其值域为 (0,1)(0,1)。也就是说,输入的每个神经元、节点都会被缩放到一个介于0和1之间的值。
当x大于零时输出结果会趋近于1,而当x小于零时,输出结果趋向于0,由于函数的特性,经常被用作二分类的输出端激活函数。
缺陷
当输入数据很大或者很小时,函数的梯度几乎接近于0,这对神经网络在反向传播中的学习非常不利。
Sigmoid函数的均值不是0,这使得神经网络的训练过程中只会产生全正或全负的反馈。
导数值小于1,反向传播易导致梯度消失。
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-x))
x = np.linspace(-10, 10, 100)
y = sigmoid(x)
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('Sigmoid(x)')
plt.title('Sigmoid Function')
plt.grid()
plt.show()
tanh
缺点
导数值小于1,反向传播易导致梯度消失。
import numpy as np
import matplotlib.pyplot as plt
def tanh(x):
return np.tanh(x)
x = np.linspace(-10, 10, 100)
y = tanh(x)
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('tanh(x)')
plt.title('Hyperbolic Tangent Function')
plt.grid()
plt.show()
如何选择激活函数
用于分类器时,二分类为Sigmoid,多分类为Softmax,这两类一般用于输出层;
对于长序列的问题,隐藏层中尽量避免使用Sigmoid和Tanh,会造成梯度消失的问题;
Relu在Gelu出现之前在大多数情况下比较通用,但也只能在隐层中使用;
现在隐藏层中主要的选择肯定优先是Gelu、Swish了。
不过大部分情况下论文用什么就用什么了。
Bert、GPT、GPT2中用的激活函数是什么?为什么?
Gelu