基于飞桨PaddlePaddle的图像识别深度学习实践心得

本文分享了使用飞桨PaddlePaddle进行图像识别的深度学习实践,包括人工神经网络的建立流程,如何利用飞桨构建DNN网络和卷积神经网络,以及卷积神经网络的局部连接、共享权值和下采样的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于飞桨PaddlePaddle的图像识别深度学习实践心得

一、深度学习解析
在图像识别中应用深度学习,实际上就是通过借鉴人脑视觉机理的基本模型:神经->中枢->大脑。即: (一)从原始信号摄入(瞳孔摄入像素Pixels)->初步处理(大脑皮层某些细胞发现边缘和方向)->抽象(大脑判定,眼前的物体的形状,是圆形的)->进一步抽象(大脑进一步判定该物体是人脸) (二)从原始信号,做低级抽象,逐渐向高级抽象迭代。
在这里插入图片描述
二、基本人工神经网络建立流程
人工神经网络经过数十年的快速发展,已经得到了迭代进化,那么建立一个基本的人工智能神经网络需要经过哪些步骤呢:
(一)建立模型:主要解决选择什么样的网络结构;选择多少层数,每层选择多少神经元;
在这里插入图片描述
(二)损失函数:主要解决选择哪些常用损失函数、平方误差、交叉熵;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值