基于飞桨PaddlePaddle的图像识别深度学习实践心得
一、深度学习解析
在图像识别中应用深度学习,实际上就是通过借鉴人脑视觉机理的基本模型:神经->中枢->大脑。即: (一)从原始信号摄入(瞳孔摄入像素Pixels)->初步处理(大脑皮层某些细胞发现边缘和方向)->抽象(大脑判定,眼前的物体的形状,是圆形的)->进一步抽象(大脑进一步判定该物体是人脸) (二)从原始信号,做低级抽象,逐渐向高级抽象迭代。
二、基本人工神经网络建立流程
人工神经网络经过数十年的快速发展,已经得到了迭代进化,那么建立一个基本的人工智能神经网络需要经过哪些步骤呢:
(一)建立模型:主要解决选择什么样的网络结构;选择多少层数,每层选择多少神经元;
(二)损失函数:主要解决选择哪些常用损失函数、平方误差、交叉熵;