关联式容器的底层结构---AVL树

关联式容器的底层结构

相信大家在编写程序的时候,会经常用到树形结构的关联式容器,然而你熟悉的这些关联式容器比如:map/set/multimap/multiset,它们的底层实现都是二叉搜素树。

二叉搜索树的性能分析

①插入和删除之前都必须先进行查找插入删除位置,所以说查找的效率代表了二叉搜索树的整体效率
②对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
③最优情况下,二叉搜索树为完全二叉树(图一),其平均比较次数为:O(logN)
最差情况下,二叉搜索树退化为单支树(图二),其平均比较次数为:O(N/2)

综上,二叉搜索树虽然可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。如果能保证每个节点的左右子树高度之差的绝对值不超过1,即可降低树的高度,从而减少平均搜索长度。所以便有了性能改进的2.0版本AVL树。

AVL树概念

①它的左右子树都是AVL树
②左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
在这里插入图片描述
AVL树的性质使它在插入和删除在极大程度上趋近于完全二叉树,由此可以避免二叉搜索树由于插入次序不当而出现单只的最差情况。而它究竟是如何调整平衡因子的呢?

AVL树的平衡因子

为了保证,我们的树是平衡的,AVL树引入了平衡因子的概念。每个节点都拥有自己的平衡因子,平衡因子的计算方式是右子树的高度减去左子树的高度,且平衡因子只有可能是-1,0,1三个数字。

AVL树的节点定义
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf;//平衡因子
	pair<K, V> _kv;

	AVLTreeNode(const pair<K, V>& kv)//进行初始化
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
		, _kv(kv)
	{}
};
AVL树节点的插入

当插入的节点使上层节点发生改变,使祖先的平衡因子变为2或-2的情况这时就需要对影响祖先平衡因子改变这条路径进行旋转调整。

旋转规则

①cur节点的左树成为parent节点的右树
②parent节点成为cur节点的左树
一共有四种旋转情况,以下一一列举

一.左单旋

在这里插入图片描述
有了上面的基础我们再增加一些节点:
在这里插入图片描述
看懂以上,我们总结一下它的抽象图:
在这里插入图片描述
下面我们来看看左单旋是如何实现的
在这里插入图片描述

void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)   //subRL要判断存在,否则不能对空解引用
			subRL->_parent = parent;

		subR->_left = parent;
		Node* parentParent = parent->_parent; //要记录父节点在祖父节点的左边还是右边,以便判断cur在祖父节点的左边还是右边
		parent->_parent = subR;

		if (_root == parent)
		{
			_root = subR;
			subR->_parent = NULL;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}

			subR->_parent = parentParent;
		}

		parent->_bf = subR->_bf = 0;
	}
二.右单旋

同理,以下为右单旋的过程:
在这里插入图片描述
右单旋抽象图:
右单旋

三.右左双旋

在这里插入图片描述
在这里插入图片描述
我们再来看个特别的情况:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
细心的同学可能发现了一个规律:这三种情况都出自右左双旋这个旋转规律,但是旋转之后的平衡因子似乎不大相同;

void RotateRL(Node* parent)
	{
		Node* SubR = parent->_right;
		Node* SubRL = SubR->_left;
		int bf = SubRL->_bf;//记录右左双旋之前SubRL的平衡因子

		RotateR(parent->_right);
		RotateL(parent);
		if (bf == 1)//如果之前为1,对照上图插入在SubRL右侧的情况
		{
			SubR->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)//如果之前为-1,对照上图插入在SubRL左侧的情况
		{
			SubR->_bf = 1;
			parent->_bf = 0;
		}
		else if (bf == 0)//说明我自己就是刚刚插入的节点
		{
			parent->_bf = SubR->_bf = 0;
		}
		SubRL->_bf = 0;//SubRL最后的平衡因子总为0
	}
四.左右双旋

左右双旋与右左双旋类似,所以这里简单附上一个具象图
在这里插入图片描述

void RotateLR(Node* parent)//对照抽象图动手画一画会变得非常明了
	{
		Node* SubL = parent->_left;
		Node* SubLR = SubL->_right;
		int bf = SubLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);
		if (bf == 1)
		{
			SubL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == -1)
		{
			SubL->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 0)
		{
			parent->_bf = SubL->_bf = 0;
		}
		SubLR->_bf = 0;
	}

总结:

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑
1、pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
a、当pSubR的平衡因子为1时,执行左单旋
b、当pSubR的平衡因子为-1时,执行右左双旋
2、pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
a、当pSubL的平衡因子为-1是,执行右单旋
b、当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1、 验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2、 验证其为平衡树
每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子) 节点的平衡因子是否计算正确

	int _Height(Node* pRoot)
	{
		if (nullptr == pRoot)
			return 0;

		int leftHeight = _Height(pRoot->_pLeft);
		int rightHeight = _Height(pRoot->_pRight);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	} 
     bool _IsAVLTree(Node* pRoot)
	{
	  // 空树也是AVL树
		if (nullptr == pRoot)
			return true;
      // 计算pRoot节点的平衡因子:即pRoot左右子树的高度差 
		int leftHeight = _Height(pRoot->_pLeft);
		int rightHeight = _Height(pRoot->_pRight);
      // 如果计算出的平衡因子与pRoot的平衡因子不相等,或者     
      // pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (abs(rightHeight - leftHeight) > 1 || rightHeight - leftHeight != pRoot->_bf)
			return false;
       // pRoot的左和右如果都是AVL树,则该树一定是AVL树 
		return _IsAVLTree(pRoot->_pLeft) && _IsAVLTree(pRoot->_pRight);
	}

AVL树性能分析

AVL树平衡的特性可以保证查询时高效的时间复杂度,但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如: 插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。 因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树, 但一个结构经常修改,就不太适合。

以下为AVL树完整版代码

#include<iostream>
using namespace std;
template<class K,class V>
struct AVLTreeNode{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	int _bf;//平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
		,_kv(kv)
	{

	}
};
template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	V& operator[](const K& key)
	{
		pair<Node*, bool> ret = Insert(make_pair(key, V()));
		return ret.first->_kv.second;
	}
	pair<Node*, bool>Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return make_pair(_root, true);
		}
		//1.按照搜索树的规则进行插入
		Node* parents = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else {
				return make_pair(cur, false);
			}
		}
		Node* newnode = new Node(kv);
		cur = newnode;
		cur->_bf = 0;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else {
			parent->_left = cur;
			cur->_parent = parent;
		}
		//平衡问题
		//2.更新平衡因子
		while (parent)
		{
			if (cur == parent->_right)
				parent->_bf += 1;
			else
				parent->_bf -= 1;
			if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//旋转处理
				if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateRL(parent);
				}
				else
				{
					assert(false);
				}
				break;
			}
		}
		return make_pair(newnode, true);
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subR;

		if (_root == parent)
		{
			_root = subR;
			subR->_parent = NULL;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}

			subR->_parent = parentParent;
		}

		parent->_bf = subR->_bf = 0;
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* parentParent = parent->_parent;
		parent_parent = subL;
		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}

			subL->_parent = parentParent;
		}

		subL->_bf = parent->_bf = 0;
	}
	void RotateLR(Node* parent)//对照抽象图动手画一画会变得非常明了
	{
		Node* SubL = parent->_left;
		Node* SubLR = SubL->_right;
		int bf = SubLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);
		if (bf == 1)
		{
			SubL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == -1)
		{
			SubL->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 0)
		{
			parent->_bf = SubL->_bf = 0;
		}
		SubLR->_bf = 0;
	}


	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 1)
		{
			subRL->_bf = 0;
			parent->_bf = -1;
			subR->_bf = 0;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else if (bf == 0)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 0;
		}
	}

	int Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
			return true;

		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << ":平衡因子异常" << endl;
			return false;
		}

		return abs(leftHeight - rightHeight) < 2
			&& _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}

	bool IsBalance()
	{
		return _IsBalance(_root);
	}
private:
	Node* _root = nullptr;
};
void TestAVLTree()
{
	//AVLTree<int, double> t;
	//t.Insert(make_pair(1, 1.1));
	//t.Insert(make_pair(2, 2.2));
	t[3];
	//t[3] = 3.3;
	//t[4] = 4.4;
	//t[5] = 5.5;
	//t[6] = 6.6;

	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}

	cout << t.IsBalance() << endl;
}
C++ STL中没有直接提供二叉搜索树的实现,但STL中有一些关于树的容器,比如set和map,它们底层的实现就是基于红黑树(一种平衡二叉搜索树)的。你可以使用这些容器来实现二叉搜索树的功能。关于二叉搜索树的一些知识,比如二叉树的遍历、迭代、线索二叉树、堆、Huffman编码、AVL树等都可以在STL中找到相应的实现。 二叉搜索树的查找可以通过比较根节点的值和目标值的大小来判断是往左子树还是往右子树查找,并重复这个过程直到找到目标值或者遍历到叶子节点为止。常规实现使用循环来实现查找,递归实现使用递归函数来查找。 二叉搜索树的插入操作也可以通过递归或循环来实现,根据目标值和当前节点的值的大小关系来决定是往左子树还是往右子树插入新节点。 STL中的二叉搜索树容器如set和map提供了插入、删除和查找等功能,并且保持了二叉搜索树的性质。你可以使用这些容器来处理二叉搜索树相关的操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [C++ STL 数据结构 树](https://download.csdn.net/download/xinxipan/3008948)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【C++ STL】-- 二叉搜索树](https://blog.csdn.net/weixin_64609308/article/details/128018280)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值