机器学习篇—Pandas数据处理基础

Pandas 是非常著名的开源数据处理库,其基于 NumPy 开发,该工具是 Scipy 生态中为了解决数据分析任务而设计。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的函数和方法。本文是学习相关课程之后,做的些许笔记。😀😀😀

Pandas数据类型

pandas主要数据类型

//主要使用
Series(一维数组)
DataFrame(二维数组)
//次要使用
Panel(三维数组)
Panel4D(四维数组)
PanelND(更多维数组)

导入pandas库

%matplotlib inline
import pandas as pd

创建Pandas基本数据结构

Series

pandas.Series(data=None, index=None)
//数据只有列索引
//data 可以是字典,或者NumPy 里的 ndarray 对象
//index 是数据索引,索引是Pandas数据结构中的一大特性,它主要的功能是帮助我们更快速地定位数据
示例:
//通过字典创建series结构
a=pd.Series({
   'x':6,'y':66,'z':666})
结果:
x      6
y     66
z    666
dtype: int64 //此处默认为int64数据类型
//通过ndarray对象创建series结构
示例:
a=pd.Series(np.random.randint(1,6,6))
结果:
0    2
1    5
2    1
3    4
4    5
5    4
dtype: int64

DataFrame

//数据不但具有行索引,且具有列索引。
pandas.DataFrame(data=None, index=None, columns=None)
//一维数组、列表、字典或者 Series 字典。
示例1:Series 字典。
a=pd.DataFrame({
   'x':pd.Series((1,2,3)),'y':pd.Series((4,5,6))})
结果:
	x	y
0	1	4
1	2	5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值