1. 设
u
=
a
−
b
+
2
c
,
v
=
−
a
+
3
b
−
c
u=a-b+2 c, v=-a+3 b-c
u=a−b+2c,v=−a+3b−c. 试用
a
、
b
、
c
a 、 b 、 c
a、b、c 表示
2
u
−
3
v
2 u-3 v
2u−3v.
2. 如果平面上一个四边形的对角线互相平分, 试用向量证明它是平行四边形.
3. 把
△
A
B
C
\triangle A B C
△ABC 的
B
C
B C
BC 边五等分, 设分点依次为
D
1
、
D
2
、
D
3
、
D
4
D_1 、 D_2 、 D_3 、 D_4
D1、D2、D3、D4, 再把各分点与点
A
A
A 连接. 试以
A
B
→
=
c
、
B
C
→
=
a
\overrightarrow{A B}=\boldsymbol{c} 、 \overrightarrow{B C}=\boldsymbol{a}
AB=c、BC=a 表示向量
D
1
A
→
⋅
D
2
A
→
、
D
3
A
→
\overrightarrow{D_1 A} \cdot \overrightarrow{D_2 A} 、 \overrightarrow{D_3 A}
D1A⋅D2A、D3A 和
D
4
A
→
\overrightarrow{D_4 A}
D4A.
4. 已知两点
M
1
(
0
,
1
,
2
)
M_1(0,1,2)
M1(0,1,2) 和
M
2
(
1
,
−
1
,
0
)
M_2(1,-1,0)
M2(1,−1,0). 试用坐标表示式表示向量
M
1
M
2
→
\overrightarrow{M_1 M_2}
M1M2 及
−
2
M
1
M
2
→
-2 \overrightarrow{M_1 M_2}
−2M1M2.
13. 在
y
O
z
y O z
yOz 面上, 求与三点
A
(
3
,
1
,
2
)
、
B
(
4
,
−
2
,
−
2
)
A(3,1,2) 、 B(4,-2,-2)
A(3,1,2)、B(4,−2,−2) 和
C
(
0
,
5
,
1
)
C(0,5,1)
C(0,5,1) 等距离的点.
15. 设已知两点
M
1
(
4
,
2
,
1
)
M_1(4, \sqrt{2}, 1)
M1(4,2,1) 和
M
2
(
3
,
0
,
2
)
M_2(3,0,2)
M2(3,0,2), 计算向量
M
1
M
2
→
\overrightarrow{M_1 M_2}
M1M2 的模、方向余弦和方向角.
16. 设向量的方向余弦分别满足 (1)
cos
α
=
0
;
\cos \alpha=0 ;
cosα=0;(2)
cos
β
=
1
;
\cos \beta=1 ;
cosβ=1;(3)
cos
α
=
cos
β
=
0
\cos \alpha=\cos \beta=0
cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?
17. 设向量
r
\boldsymbol{r}
r 的模是 4 , 它与
u
u
u 轴的夹角是
π
3
\frac{\pi}{3}
3π, 求
r
r
r 在
u
u
u 轴上的投影.
18. 一向量的终点在点
B
(
2
,
−
1
,
7
)
B(2,-1,7)
B(2,−1,7), 它在
x
x
x 轴
y
y
y 轴和
z
z
z 轴上的投影依次为
4
,
−
4
4,-4
4,−4 和 7 . 求这向量的起点
A
A
A 的坐标.
19. 设
m
=
3
i
+
5
j
+
8
k
,
n
=
2
i
−
4
j
−
7
k
m=3 i+5 j+8 k, n=2 i-4 j-7 k
m=3i+5j+8k,n=2i−4j−7k 和
p
=
5
i
+
j
−
4
k
p=5 i+j-4 k
p=5i+j−4k, 求向量
a
=
4
m
+
3
n
−
p
a=4 m+3 n-p
a=4m+3n−p 在
x
x
x 轴上的投影及在
y
y
y 轴上的分向量。