【课后习题】高等数学第七版下第八章 向量代数与空间解析几何 第一节 向量及其线性运算

习题8-1

1. 设 u = a − b + 2 c , v = − a + 3 b − c u=a-b+2 c, v=-a+3 b-c u=ab+2c,v=a+3bc. 试用 a 、 b 、 c a 、 b 、 c abc 表示 2 u − 3 v 2 u-3 v 2u3v.

在这里插入图片描述

2. 如果平面上一个四边形的对角线互相平分, 试用向量证明它是平行四边形.

在这里插入图片描述

3. 把 △ A B C \triangle A B C ABC B C B C BC 边五等分, 设分点依次为 D 1 、 D 2 、 D 3 、 D 4 D_1 、 D_2 、 D_3 、 D_4 D1D2D3D4, 再把各分点与点 A A A 连接. 试以 A B → = c 、 B C → = a \overrightarrow{A B}=\boldsymbol{c} 、 \overrightarrow{B C}=\boldsymbol{a} AB =cBC =a 表示向量 D 1 A → ⋅ D 2 A → 、 D 3 A → \overrightarrow{D_1 A} \cdot \overrightarrow{D_2 A} 、 \overrightarrow{D_3 A} D1A D2A D3A D 4 A → \overrightarrow{D_4 A} D4A .

在这里插入图片描述

4. 已知两点 M 1 ( 0 , 1 , 2 ) M_1(0,1,2) M1(0,1,2) M 2 ( 1 , − 1 , 0 ) M_2(1,-1,0) M2(1,1,0). 试用坐标表示式表示向量 M 1 M 2 → \overrightarrow{M_1 M_2} M1M2 − 2 M 1 M 2 → -2 \overrightarrow{M_1 M_2} 2M1M2 .

在这里插入图片描述

5. 求平行于向量 a = ( 6 , 7 , − 6 ) a=(6,7,-6) a=(6,7,6) 的单位向量.

在这里插入图片描述

6. 在空间直角坐标系中,指出下列各点在哪个卦限?

A ( 1 , − 2 , 3 ) , B ( 2 , 3 , − 4 ) , C ( 2 , − 3 , − 4 ) , D ( − 2 , − 3 , 1 ) .  A(1,-2,3), B(2,3,-4), C(2,-3,-4), D(-2,-3,1) \text {. } A(1,2,3),B(2,3,4),C(2,3,4),D(2,3,1)

在这里插入图片描述

7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:

A ( 3 , 4 , 0 ) , B ( 0 , 4 , 3 ) , C ( 3 , 0 , 0 ) , D ( 0 , − 1 , 0 ) .  A(3,4,0), B(0,4,3), C(3,0,0), D(0,-1,0) \text {. } A(3,4,0),B(0,4,3),C(3,0,0),D(0,1,0)

在这里插入图片描述

8. 求点 ( a , b , c ) (a, b, c) (a,b,c) 关于 (1) 各坐标面; (2) 各坐标轴; (3) 坐标原点的对称点的坐标.

在这里插入图片描述

9. 点 P 0 ( x 0 , y 0 , z 0 ) P_0\left(x_0, y_0, z_0\right) P0(x0,y0,z0) 分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.

在这里插入图片描述

在这里插入图片描述

10. 过点 P 0 ( x 0 , y 0 , z 0 ) P_0\left(x_0, y_0, z_0\right) P0(x0,y0,z0) 分别作平行于 z z z 轴的直线和平行于 x O y x O y xOy 面的平面, 问在它们上面 的点的坐标各有什么特点?

在这里插入图片描述

在这里插入图片描述

11. 一边长为 a a a 的正方体放置在 x O y x O y xOy 面上, 其底面的中心在坐标原点, 底面的顶点在 x x x 轴 和 y y y 轴上, 求它各顶点的坐标.

在这里插入图片描述

在这里插入图片描述

12. 求点 M ( 4 , − 3 , 5 ) M(4,-3,5) M(4,3,5) 到各坐标轴的距离.

在这里插入图片描述

13. 在 y O z y O z yOz 面上, 求与三点 A ( 3 , 1 , 2 ) 、 B ( 4 , − 2 , − 2 ) A(3,1,2) 、 B(4,-2,-2) A(3,1,2)B(4,2,2) C ( 0 , 5 , 1 ) C(0,5,1) C(0,5,1) 等距离的点.

在这里插入图片描述

14. 试证明以三点 A ( 4 , 1 , 9 ) 、 B ( 10 , − 1 , 6 ) 、 C ( 2 , 4 , 3 ) A(4,1,9) 、 B(10,-1,6) 、 C(2,4,3) A(4,1,9)B(10,1,6)C(2,4,3) 为顶点的三角形是等腰直角三角形.

在这里插入图片描述

15. 设已知两点 M 1 ( 4 , 2 , 1 ) M_1(4, \sqrt{2}, 1) M1(4,2 ,1) M 2 ( 3 , 0 , 2 ) M_2(3,0,2) M2(3,0,2), 计算向量 M 1 M 2 → \overrightarrow{M_1 M_2} M1M2 的模、方向余弦和方向角.

在这里插入图片描述

16. 设向量的方向余弦分别满足 (1) cos ⁡ α = 0 ; \cos \alpha=0 ; cosα=0;(2) cos ⁡ β = 1 ; \cos \beta=1 ; cosβ=1;(3) cos ⁡ α = cos ⁡ β = 0 \cos \alpha=\cos \beta=0 cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?

在这里插入图片描述

17. 设向量 r \boldsymbol{r} r 的模是 4 , 它与 u u u 轴的夹角是 π 3 \frac{\pi}{3} 3π, 求 r r r u u u 轴上的投影.

在这里插入图片描述

18. 一向量的终点在点 B ( 2 , − 1 , 7 ) B(2,-1,7) B(2,1,7), 它在 x x x y y y 轴和 z z z 轴上的投影依次为 4 , − 4 4,-4 4,4 和 7 . 求这向量的起点 A A A 的坐标.

在这里插入图片描述

19. 设 m = 3 i + 5 j + 8 k , n = 2 i − 4 j − 7 k m=3 i+5 j+8 k, n=2 i-4 j-7 k m=3i+5j+8k,n=2i4j7k p = 5 i + j − 4 k p=5 i+j-4 k p=5i+j4k, 求向量 a = 4 m + 3 n − p a=4 m+3 n-p a=4m+3np x x x 轴上的投影及在 y y y 轴上的分向量。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值