- 设 u = u ( x , y ) u=u(x,y) u=u(x,y)为可微分两次的函数,若 δ u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ≡ 0 \delta u=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}\equiv0 δu=∂x2∂2u+∂y2∂2u≡0,则称u为调和函数.证明: u ( x , y ) u(x,y) u(x,y)为调和函数的充分必要条件是:对任意闭曲线L,都有 ∮ L ∂ u ∂ n d s = 0 \oint_L\frac{\partial u}{\partial\bm{n}}ds=0 ∮L∂n∂uds=0,其中 n \bm{n} n表示L的外法线方向.
证明:
∮ L ∂ u ∂ n d s = 0 ⇔ ∮ L − ∂ u ∂ y d x + ∂ u ∂ x d y = 0 ⇔ ∬ S ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 ⇔ ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ≡ 0 \oint_L\frac{\partial u}{\partial\bm{n}}ds=0\Leftrightarrow\oint_L-\frac{\partial u}{\partial y}dx+\frac{\partial u}{\partial x}dy=0\Leftrightarrow\iint_S\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=0\Leftrightarrow\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}\equiv0 ∮L∂n∂uds=0⇔∮L−∂y∂udx+∂x∂udy=0⇔∬S∂x2∂2u+∂y2∂2u=0⇔∂x2∂2u+∂y2∂2u≡0 - 求两积分 I 1 = ∬ S 1 ( x 2 + y 2 + z 2 ) d S I_1=\iint_{S_1}(x^2+y^2+z^2)dS I1=∬S1(x2+y2+z2)dS与 I 2 = ∬ S 2 ( x 2 + y 2 + z 2 ) d S I_2=\iint_{S_2}(x^2+y^2+z^2)dS I2=∬S2(x2+y2+z2)dS之差,其中 S 1 S_1 S1为球面: x 2 + y 2 + z 2 = a 2 ( a > 0 ) x^2+y^2+z^2=a^2(a>0) x2+y2+z2=a2(a>0), S 2 S_2 S2为内接与此球的八面体: ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = a |x|+|y|+|z|=a ∣x∣+∣y∣+∣z∣=a.
解:
设区域 D 1 : x 2 + y 2 = a 2 ( x > 0 , y > 0 ) D_1:x^2+y^2=a^2(x>0,y>0) D1:x2+y2=a2(x>0,y>0),区域 D 2 : x + y = a ( x > 0 , y > 0 ) D_2:x+y=a(x>0,y>0) D2:x+y=a(x>0,y>0)
根据对称性:
I 1 = ∬ S 1 ( x 2 + y 2 + z 2 ) d S = 8 ∬ D 1 a 2 ⋅ a a 2 − x 2 − y 2 d σ = 8 a 3 ∫ 0 π 2 d θ ∫ 0 a ρ a 2 − ρ 2 d ρ = 4 π a 4 \begin{aligned} I_1&=\iint_{S_1}(x^2+y^2+z^2)dS\\ &=8\iint_{D_1}a^2\cdot\frac{a}{\sqrt{a^2-x^2-y^2}}d\sigma\\ &=8a^3\int_0^{\frac{\pi}{2}}d\theta\int_0^a\frac{\rho}{\sqrt{a^2-\rho^2}}d\rho\\ &=4\pi a^4 \end{aligned} I1=∬S1(x2+y2+z2)dS=8∬D1a2⋅a2−x2−y2adσ=8a3∫02πdθ∫0a