- 设u=u(x,y)u=u(x,y)u=u(x,y)为可微分两次的函数,若δu=∂2u∂x2+∂2u∂y2≡0\delta u=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}\equiv0δu=∂x2∂2u+∂y2∂2u≡0,则称u为调和函数.证明:u(x,y)u(x,y)u(x,y)为调和函数的充分必要条件是:对任意闭曲线L,都有∮L∂u∂nds=0\oint_L\frac{\partial u}{\partial\bm{n}}ds=0∮L∂n∂uds=0,其中n\bm{n}n表示L的外法线方向.
证明:
∮L∂u∂nds=0⇔∮L−∂u∂ydx+∂u∂xdy=0⇔∬S∂2u∂x2+∂2u∂y2=0⇔∂2u∂x2+∂2u∂y2≡0\oint_L\frac{\partial u}{\partial\bm{n}}ds=0\Leftrightarrow\oint_L-\frac{\partial u}{\partial y}dx+\frac{\partial u}{\partial x}dy=0\Leftrightarrow\iint_S\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=0\Leftrightarrow\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}\equiv0∮L∂n∂uds=0⇔∮L−∂y∂udx+∂x∂udy=0⇔∬S∂x2∂2u+∂y2∂2u=0⇔∂x2∂2u+∂y2∂2u≡0 - 求两积分I1=∬S1(x2+y2+z2)dSI_1=\iint_{S_1}(x^2+y^2+z^2)dSI1=∬S1(x2+y2+z2)dS与I2=∬S2(x2+y2+z2)dSI_2=\iint_{S_2}(x^2+y^2+z^2)dSI2=∬S2(x2+y2+z2)dS之差,其中S1S_1S1为球面:x2+y2+z2=a2(a>0)x^2+y^2+z^2=a^2(a>0)x2+y2+z2=a2(a>0),S2S_2S2为内接与此球的八面体:∣x∣+∣y∣+∣z∣=a|x|+|y|+|z|=a∣x∣+∣y∣+∣z∣=a.
解:
设区域D1:x2+y2=a2(x>0,y>0)D_1:x^2+y^2=a^2(x>0,y>0)D1:x2+y2=a2(x>0,y>0),区域D2:x+y=a(x>0,y>0)D_2:x+y=a(x>0,y>0)D2:x+y=a(x>0,y>0)
根据对称性:
I1=∬S1(x2+y2+z2)dS=8∬D1a2⋅aa2−x2−y2dσ=8a3∫0π2dθ∫0aρa2−ρ2dρ=4πa4\begin{aligned} I_1&=\iint_{S_1}(x^2+y^2+z^2)dS\\ &=8\iint_{D_1}a^2\cdot\frac{a}{\sqrt{a^2-x^2-y^2}}d\sigma\\ &=8a^3\int_0^{\frac{\pi}{2}}d\theta\int_0^a\frac{\rho}{\sqrt{a^2-\rho^2}}d\rho\\ &=4\pi a^4 \end{aligned}I1=∬S1(x2+y2+z2)dS=8∬D1a2⋅a2−x2−y2adσ=8a3∫02πdθ∫
高数习题第八章总练习题(下)
最新推荐文章于 2023-01-16 00:01:38 发布