高数习题第八章总练习题(下)

本文通过证明展示了调和函数的特性:对于可微分两次的函数u(x,y),其为调和函数的充要条件是沿任意闭曲线的环流积分为0。此外,还探讨了积分计算问题,包括球面、八面体的积分计算,以及特定曲线积分与封闭区域面积的关系。同时,文章解释了向量函数的旋度、斯托克斯公式的应用条件,并解决了一个关于空间中点的梯度模长问题。" 90348275,8243288,链表操作:从尾到头打印与双向链表实现,"['数据结构', '链表', '算法', 'JS实现']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. u=u(x,y)u=u(x,y)u=u(x,y)为可微分两次的函数,若δu=∂2u∂x2+∂2u∂y2≡0\delta u=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}\equiv0δu=x22u+y22u0,则称u为调和函数.证明:u(x,y)u(x,y)u(x,y)为调和函数的充分必要条件是:对任意闭曲线L,都有∮L∂u∂nds=0\oint_L\frac{\partial u}{\partial\bm{n}}ds=0Lnuds=0,其中n\bm{n}n表示L的外法线方向.
    证明:
    ∮L∂u∂nds=0⇔∮L−∂u∂ydx+∂u∂xdy=0⇔∬S∂2u∂x2+∂2u∂y2=0⇔∂2u∂x2+∂2u∂y2≡0\oint_L\frac{\partial u}{\partial\bm{n}}ds=0\Leftrightarrow\oint_L-\frac{\partial u}{\partial y}dx+\frac{\partial u}{\partial x}dy=0\Leftrightarrow\iint_S\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=0\Leftrightarrow\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}\equiv0Lnuds=0Lyudx+xudy=0Sx22u+y22u=0x22u+y22u0
  2. 求两积分I1=∬S1(x2+y2+z2)dSI_1=\iint_{S_1}(x^2+y^2+z^2)dSI1=S1(x2+y2+z2)dSI2=∬S2(x2+y2+z2)dSI_2=\iint_{S_2}(x^2+y^2+z^2)dSI2=S2(x2+y2+z2)dS之差,其中S1S_1S1为球面:x2+y2+z2=a2(a>0)x^2+y^2+z^2=a^2(a>0)x2+y2+z2=a2(a>0)S2S_2S2为内接与此球的八面体:∣x∣+∣y∣+∣z∣=a|x|+|y|+|z|=ax+y+z=a.
    解:
    设区域D1:x2+y2=a2(x>0,y>0)D_1:x^2+y^2=a^2(x>0,y>0)D1:x2+y2=a2(x>0,y>0),区域D2:x+y=a(x>0,y>0)D_2:x+y=a(x>0,y>0)D2:x+y=a(x>0,y>0)
    根据对称性:
    I1=∬S1(x2+y2+z2)dS=8∬D1a2⋅aa2−x2−y2dσ=8a3∫0π2dθ∫0aρa2−ρ2dρ=4πa4\begin{aligned} I_1&=\iint_{S_1}(x^2+y^2+z^2)dS\\ &=8\iint_{D_1}a^2\cdot\frac{a}{\sqrt{a^2-x^2-y^2}}d\sigma\\ &=8a^3\int_0^{\frac{\pi}{2}}d\theta\int_0^a\frac{\rho}{\sqrt{a^2-\rho^2}}d\rho\\ &=4\pi a^4 \end{aligned}I1=S1(x2+y2+z2)dS=8D1a2a2x2y2 adσ=8a302πdθ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值