习题10-2
1. 计算下列二重积分:
(1) ∬ D ( x 2 + y 2 ) d σ \iint_D\left(x^2+y^2\right) \mathrm{d} \sigma ∬D(x2+y2)dσ, 其中 D = { ( x , y ) ∣ ∣ x ∣ ⩽ 1 , ∣ y ∣ ⩽ 1 ∣ D=\{(x, y)|| x|\leqslant 1,|y|\leqslant 1| D={(x,y)∣∣x∣⩽1,∣y∣⩽1∣;
(2) ∬ D ( 3 x + 2 y ) d σ \iint_D(3 x+2 y) \mathrm{d} \sigma ∬D(3x+2y)dσ, 其中 D D D 是由两坐标轴及直线 x + y = 2 x+y=2 x+y=2 所围成的闭区域;
(3) ∬ D ( x 3 + 3 x 2 y + y 3 ) d σ \iint_D\left(x^3+3 x^2 y+y^3\right) \mathrm{d} \sigma ∬D(x3+3x2y+y3)dσ, 其中 D = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 1 } D=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\} D={(x,y)∣0⩽x⩽1,0⩽y⩽1};
(4) ∬ D x cos ( x + y ) d σ \iint_D x \cos (x+y) \mathrm{d} \sigma ∬Dxcos(x+y)dσ, 其中 D D D 是顶点分别为 ( 0 , 0 ) , ( π , 0 ) (0,0),(\pi, 0) (0,0),(π,0) 和 ( π , π ) (\pi, \pi) (π,π) 的三角形闭区域.
2. 画出积分区域, 并计算下列二重积分:
(1) ∬ D x y d σ \iint_D x \sqrt{y} \mathrm{~d} \sigma ∬Dxy dσ, 其中 D D D 是由两条抛物线 y = x , y = x 2 y=\sqrt{x}, y=x^2 y=x,y=x2 所围成的闭区域;
(2) ∬ D x y 2 d σ \iint_D x y^2 \mathrm{~d} \sigma ∬Dxy2 dσ, 其中 D D D 是由圆周 x 2 + y 2 = 4 x^2+y^2=4 x2+y2=4 及 y y y 轴所围成的右半闭区域;
(3) ∬ D e x + y d σ \iint_D \mathrm{e}^{x+y} \mathrm{~d} \sigma ∬Dex+y dσ, 其中 D = { ( x , y ) ∣ ∣ x ∣ + ∣ y ∣ ⩽ 1 } D=\{(x, y)|| x|+| y \mid \leqslant 1\} D={(x,y)∣∣x∣+∣y∣⩽1};
(4) ∬ D ( x 2 + y 2 − x ) d σ \iint_D\left(x^2+y^2-x\right) \mathrm{d} \sigma ∬D(x2+y2−x)dσ, 其中 D D D 是由直线 y = 2 , y = x y=2, y=x y=2,y=x 及 y = 2 x y=2 x y=2x 所围成的闭区域.
3. 如果二重积分 ∬ D f ( x , y ) d x d y \iint_D f(x, y) \mathrm{d} x \mathrm{~d} y ∬Df(x,y)dx dy 的被积函数 f ( x , y ) f(x, y) f(x,y) 是两个函数 f 1 ( x ) f_1(x) f1(x) 及 f 2 ( y ) f_2(y) f2(y) 的乘积, 即 f ( x , y ) = f 1 ( x ) ⋅ f 2 ( y ) f(x, y)=f_1(x) \cdot f_2(y) f(x,y)=f1(x)⋅f2(y), 积分区域 D = { ( x , y ) ∣ a ⩽ x ⩽ b , c ⩽ y ⩽ d } D=\{(x, y) \mid a \leqslant x \leqslant b, c \leqslant y \leqslant d\} D={(x,y)∣a⩽x⩽b,c⩽y⩽d}, 证明这个二重积分等于两 个单积分的乘积, 即
∬ D f 1 ( x ) ⋅ f 2 ( y ) d x d y = [ ∫ a b f 1 ( x ) d x ] ⋅ [ ∫ c d f 2 ( y ) d y ] . \iint_D f_1(x) \cdot f_2(y) \mathrm{d} x \mathrm{~d} y=\left[\int_a^b f_1(x) \mathrm{d} x\right] \cdot\left[\int_c^d f_2(y) \mathrm{d} y\right] . ∬Df1(x)⋅f2(y)dx dy=[∫abf1(x)dx]⋅[∫cdf2(y)dy].
4. 化二重积分
I
=
∬
D
f
(
x
,
y
)
d
σ
I=\iint_D f(x, y) \mathrm{d} \sigma
I=∬Df(x,y)dσ
为二次积分 (分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域
D
D
D 是:
(1) 由直线 y = x y=x y=x 及抛物线 y 2 = 4 x y^2=4 x y2=4x 所围成的闭区域;
(2) 由 x x x 轴及半圆周 x 2 + y 2 = r 2 ( y ⩾ 0 ) x^2+y^2=r^2(y \geqslant 0) x2+y2=r2(y⩾0) 所围成的闭区域;
(3) 由直线 y = x , x = 2 y=x, x=2 y=x,x=2 及双曲线 y = 1 x ( x > 0 ) y=\frac{1}{x}(x>0) y=x1(x>0) 所围成的闭区域;
(4) 环形闭区域 { ( x , y ) ∣ 1 ⩽ x 2 + y 2 ⩽ 4 } \left\{(x, y) \mid 1 \leqslant x^2+y^2 \leqslant 4\right\} {(x,y)∣1⩽x2+y2⩽4}.
5. 设 f ( x , y ) f(x, y) f(x,y) 在 D D D 上连续, 其中 D D D 是由直线 y = x 、 y = a y=x 、 y=a y=x、y=a 及 x = b ( b > a ) x=b(b>a) x=b(b>a) 所围成的闭区域, 证明
∫ a b d x ∫ a x f ( x , y ) d y = ∫ a b d y ∫ y b f ( x , y ) d x . \int_a^b \mathrm{~d} x \int_a^x f(x, y) \mathrm{d} y=\int_a^b \mathrm{~d} y \int_y^b f(x, y) \mathrm{d} x . ∫ab dx∫axf(x,y)dy=∫ab dy∫ybf(x,y)dx.
6. 改换下列二次积分的积分次序:
(1) ∫ 0 1 d y ∫ 0 y f ( x , y ) d x \int_0^1 \mathrm{~d} y \int_0^y f(x, y) \mathrm{d} x ∫01 dy∫0yf(x,y)dx;
(2) ∫ 0 2 d y ∫ y 2 2 y f ( x , y ) d x \int_0^2 \mathrm{~d} y \int_{y^2}^{2 y} f(x, y) \mathrm{d} x ∫02 dy∫y22yf(x,y)dx;
(3) ∫ 0 1 d y ∫ − 1 − x 2 1 − y 2 f ( x , y ) d x \int_0^1 \mathrm{~d} y \int_{-\sqrt{1-x^2}}^{\sqrt{1-y^2}} f(x, y) \mathrm{d} x ∫01 dy∫−1−x21−y2f(x,y)dx
(4) ∫ 1 2 d x ∫ 2 − x 2 x − x 2 f ( x , y ) d y \int_1^2 \mathrm{~d} x \int_{2-x}^{\sqrt{2 x-x^2}} f(x, y) \mathrm{d} y ∫12 dx∫2−x2x−x2f(x,y)dy;
(5) ∫ 1 e d x ∫ 0 ln x f ( x , y ) d y \int_1^e \mathrm{~d} x \int_0^{\ln x} f(x, y) \mathrm{d} y ∫1e dx∫0lnxf(x,y)dy;
(6) ∫ 0 π d x ∫ − sin x 2 sin x f ( x , y ) d y \int_0^\pi \mathrm{d} x \int_{-\sin \frac{x}{2}}^{\sin x} f(x, y) \mathrm{d} y ∫0πdx∫−sin2xsinxf(x,y)dy.
7. 设平面薄片所占的闭区域 D D D 由直线 x + y = 2 , y = x x+y=2, y=x x+y=2,y=x 和 x x x 轴所围成, 它的面密度 μ ( x , y ) = x 2 + y 2 \mu(x, y)=x^2+y^2 μ(x,y)=x2+y2, 求该薄片的质量.
8. 计算由四个平面 x = 0 , y = 0 , x = 1 , y = 1 x=0, y=0, x=1, y=1 x=0,y=0,x=1,y=1 所围成的柱体被平面 z = 0 z=0 z=0 及 2 x + 3 y + z = 6 2 x+3 y+z=6 2x+3y+z=6 截得的立体的体积.
9. 求由平面 x = 0 , y = 0 , x + y = 1 x=0, y=0, x+y=1 x=0,y=0,x+y=1 所围成的柱体被平面 z = 0 z=0 z=0 及抛物面 x 2 + y 2 = 6 − z x^2+y^2=6-z x2+y2=6−z 截得 的立体的体积.
10. 求由曲面 z = x 2 + 2 y 2 z=x^2+2 y^2 z=x2+2y2 及 z = 6 − 2 x 2 − y 2 z=6-2 x^2-y^2 z=6−2x2−y2 所围成的立体的体积.
11. 画出积分区域,把积分 ∬ D f ( x , y ) d x d y \iint_D f(x, y) \mathrm{d}x\mathrm{~d}y ∬Df(x,y)dx dy 表示为极坐标形式的二次积分, 其中积分区域 D D D 是:
(1) { ( x , y ) ∣ x 2 + y 2 ⩽ a 2 } ( a > 0 ) \left\{(x, y) \mid x^2+y^2 \leqslant a^2\right\} \quad(a>0) {(x,y)∣x2+y2⩽a2}(a>0);
(2) { ( x , y ) ∣ x 2 + y 2 ⩽ 2 x } \left\{(x, y) \mid x^2+y^2 \leqslant 2 x\right\} {(x,y)∣x2+y2⩽2x};
(3) { ( x , y ) ∣ a 2 ⩽ x 2 + y 2 ⩽ b 2 } \left\{(x, y) \mid a^2 \leqslant x^2+y^2 \leqslant b^2\right\} {(x,y)∣a2⩽x2+y2⩽b2}, 其中 0 < a < b 0<a<b 0<a<b;
(4) { ( x , y ) ∣ 0 ⩽ y ⩽ 1 − x , 0 ⩽ x ⩽ 1 } \{(x, y) \mid 0 \leqslant y \leqslant 1-x, 0 \leqslant x \leqslant 1\} {(x,y)∣0⩽y⩽1−x,0⩽x⩽1}.
12. 化下列二次积分为极坐标形式的二次积分:
(1) ∫ 0 1 d x ∫ 0 1 f ( x , y ) d y \int_0^1 \mathrm{~d} x \int_0^1 f(x, y) \mathrm{d} y ∫01 dx∫01f(x,y)dy;
(2) ∫ 0 2 d x ∫ x 3 x f ( x 2 + y 2 ) d y \int_0^2 \mathrm{~d} x \int_x^{\sqrt{3} x} f\left(\sqrt{x^2+y^2}\right) \mathrm{d} y ∫02 dx∫x3xf(x2+y2)dy;
(3) ∫ 0 1 d x ∫ 1 − x 1 − x 2 f ( x , y ) d y \int_0^1 \mathrm{~d} x \int_{1-\mathrm{x}}^{\sqrt{1-x^2}} f(x, y) \mathrm{d} y ∫01 dx∫1−x1−x2f(x,y)dy;
(4) ∫ 0 1 d x ∫ 0 t 2 f ( x , y ) d y \int_0^1 \mathrm{~d} x \int_0^{t^2} f(x, y) \mathrm{d} y ∫01 dx∫0t2f(x,y)dy.
13. 把下列积分化为极坐标形式,并计算积分值:
(1) ∫ 0 2 a d x ∫ 0 2 a x − x 2 ( x 2 + y 2 ) d y \int_0^{2 a} \mathrm{~d} x \int_0^{\sqrt{2 a x-x^2}}\left(x^2+y^2\right) \mathrm{d} y ∫02a dx∫02ax−x2(x2+y2)dy;
(2) ∫ 0 a d x ∫ 0 1 x 2 + y 2 d y \int_0^a \mathrm{~d} x \int_0^1 \sqrt{x^2+y^2} \mathrm{~d} y ∫0a dx∫01x2+y2 dy;
(3) ∫ 0 1 d x ∫ x 2 x ( x 2 + y 2 ) − 1 2 d y \int_0^1 \mathrm{~d} x \int_{x^2}^x\left(x^2+y^2\right)^{-\frac{1}{2}} \mathrm{~d} y ∫01 dx∫x2x(x2+y2)−21 dy;
(4) ∫ 0 a d y ∫ 0 a 2 − y 2 ( x 2 + y 2 ) d x \int_0^a \mathrm{~d} y \int_0^{\sqrt{a^2-y^2}}\left(x^2+y^2\right) \mathrm{d} x ∫0a dy∫0a2−y2(x2+y2)dx.
14. 利用极坐标计算下列各题:
(1) ∬ D e x 2 + y 2 d σ \iint_D \mathrm{e}^{x^2+y^2} \mathrm{~d} \sigma ∬Dex2+y2 dσ, 其中 D D D 是由圆周 x 2 + y 2 = 4 x^2+y^2=4 x2+y2=4 所围成的闭区域;
(2) ∬ D ln ( 1 + x 2 + y 2 ) d σ \iint_D \ln \left(1+x^2+y^2\right) \mathrm{d} \sigma ∬Dln(1+x2+y2)dσ, 其中 D D D 是由圆周 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1 及坐标轴所围成的在第一象限内的闭区域;
(3) ∬ D arctan y x d σ \iint_D \arctan \frac{y}{x} \mathrm{~d} \sigma ∬Darctanxy dσ, 其中 D D D 是由圆周 x 2 + y 2 = 4 , x 2 + y 2 = 1 x^2+y^2=4, x^2+y^2=1 x2+y2=4,x2+y2=1 及直线 y = 0 , y = x y=0, y=x y=0,y=x 所围成的在第一象限内的闭区域.
15. 选用适当的坐标计算下列各题:
(1) ∬ D x 2 y 2 d σ \iint_D \frac{x^2}{y^2} \mathrm{~d} \sigma ∬Dy2x2 dσ, 其中 D D D 是由直线 x = 2 , y = x x=2, y=x x=2,y=x 及曲线 x y = 1 x y=1 xy=1 所围成的闭区域;
(2) ∬ D 1 − x 2 − y 2 1 + x 2 + y 2 d σ \iint_D \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} \mathrm{~d} \sigma ∬D1+x2+y21−x2−y2 dσ, 其中 D D D 是由圆周 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1 及坐标轴所围成的在第一象限内的 闭区域;
(3) ∬ D ( x 2 + y 2 ) d σ \iint_D\left(x^2+y^2\right) \mathrm{d} \sigma ∬D(x2+y2)dσ, 其中 D D D 是由直线 y = x , y = x + a , y = a , y = 3 a ( a > 0 ) y=x, y=x+a, y=a, y=3 a(a>0) y=x,y=x+a,y=a,y=3a(a>0) 所围成的闭区域;
(4) ∬ D x 2 + y 2 d σ \iint_D \sqrt{x^2+y^2} \mathrm{~d} \sigma ∬Dx2+y2 dσ, 其中 D D D 是圆环形闭区域 { ( x , y ) ∣ a 2 ⩽ x 2 + y 2 ⩽ b 2 } \left\{(x, y) \mid a^2 \leqslant x^2+y^2 \leqslant b^2\right\} {(x,y)∣a2⩽x2+y2⩽b2}.
16. 设平面薄片所占的闭区域 D D D 由螺线 ρ = 2 θ \rho=2 \theta ρ=2θ 上一段弧 ( 0 ⩽ θ ⩽ π 2 ) \left(0 \leqslant \theta \leqslant \frac{\pi}{2}\right) (0⩽θ⩽2π) 与直线 θ = π 2 \theta=\frac{\pi}{2} θ=2π 所围成, 它的面密度为 μ ( x , y ) = x 2 + y 2 \mu(x, y)=x^2+y^2 μ(x,y)=x2+y2. 求这薄片的质量 (如下图).
17. 求由平面 y = 0 , y = k x ( k > 0 ) , z = 0 y=0, y=k x(k>0), z=0 y=0,y=kx(k>0),z=0 以及球心在原点、半径为 R R R 的上半球面所围成的在第一卦限内的立体的体积 (如下图).
18. 计算以 x O y x O y xOy 面上的圆周 x 2 + y 2 = a x x^2+y^2=a x x2+y2=ax 围成的闭区域为底, 而以曲面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 为顶的曲顶柱体的体积.
19. 作适当的变换, 计算下列二重积分:
(1) ∬ D ( x − y ) 2 sin 2 ( x + y ) d x d y \iint_D(x-y)^2 \sin ^2(x+y) \mathrm{d} x \mathrm{~d} y ∬D(x−y)2sin2(x+y)dx dy, 其中 D D D 是平行四边形闭区域, 它的四个顶点是 ( π , 0 ) (\pi, 0) (π,0), ( 2 π , π ) , ( π , 2 π ) (2 \pi, \pi),(\pi, 2 \pi) (2π,π),(π,2π) 和 ( 0 , π ) (0, \pi) (0,π);
(2) ∬ D x 2 y 2 d x d y \iint_D x^2 y^2 \mathrm{~d} x \mathrm{~d} y ∬Dx2y2 dx dy, 其中 D D D 是由两条双曲线 x y = 1 x y=1 xy=1 和 x y = 2 x y=2 xy=2, 直线 y = x y=x y=x 和 y = 4 x y=4 x y=4x 所围成的 在第一象限内的闭区域;
(3) ∬ D e y + + y d x d y \iint_D \mathrm{e}^{\frac{y}{++y}} \mathrm{~d} x \mathrm{~d} y ∬De++yy dx dy, 其中 D D D 是由 x x x 轴、 y y y 轴和直线 x + y = 1 x+y=1 x+y=1 所围成的闭区域;
(4) ∬ D ( x 2 a 2 + y 2 b 2 ) d x d y \iint_D\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right) \mathrm{d} x \mathrm{~d} y ∬D(a2x2+b2y2)dx dy, 其中 D = { ( x , y ) ∣ x 2 a 2 + y 2 b 2 ⩽ 1 } D=\left\{(x, y) \mid \frac{x^2}{a^2}+\frac{y^2}{b^2} \leqslant 1\right\} D={(x,y)∣a2x2+b2y2⩽1}.
20. 求由下列曲线所围成的闭区域 D D D 的面积:
(1) D D D 是由曲线 x y = 4 , x y = 8 , x y 3 = 5 , x y 3 = 15 x y=4, x y=8, x y^3=5, x y^3=15 xy=4,xy=8,xy3=5,xy3=15 所围成的第一象限部分的闭区域;
(2) D D D 是由曲线 y = x 3 , y = 4 x 3 , x = y 3 , x = 4 y 3 y=x^3, y=4 x^3, x=y^3, x=4 y^3 y=x3,y=4x3,x=y3,x=4y3 所围成的第一象限部分的闭区域.
21. 设闭区域 D D D 是由直线 x + y = 1 , x = 0 , y = 0 x+y=1, x=0, y=0 x+y=1,x=0,y=0 所围成, 求证
∬ D cos ( x − y x + y ) d x d y = 1 2 sin 1. \iint_D \cos \left(\frac{x-y}{x+y}\right) \mathrm{d} x \mathrm{~d} y=\frac{1}{2} \sin 1 . ∬Dcos(x+yx−y)dx dy=21sin1.
22. 选取适当的变换, 证明下列等式:
(1) ∬ D f ( x + y ) d x d y = ∫ − 1 1 f ( u ) d u \iint_D f(x+y) \mathrm{d} x \mathrm{~d} y=\int_{-1}^1 f(u) \mathrm{d} u ∬Df(x+y)dx dy=∫−11f(u)du, 其中闭区域 D = { ( x , y ) ∣ ∣ x ∣ + ∣ y ∣ ⩽ 1 } D=\{(x, y)|| x|+| y \mid \leqslant 1\} D={(x,y)∣∣x∣+∣y∣⩽1};
(2) ∬ D f ( a x + b y + c ) d x d y = 2 ∫ − 1 1 1 − u 2 f ( u a 2 + b 2 + c ) d u \iint_D f(a x+b y+c) \mathrm{d} x \mathrm{~d} y=2 \int_{-1}^1 \sqrt{1-u^2} f\left(u \sqrt{a^2+b^2}+c\right) \mathrm{d} u ∬Df(ax+by+c)dx dy=2∫−111−u2f(ua2+b2+c)du, 其中 D = ∣ ( x , y ) ∣ x 2 + y 2 ⩽ D=|(x, y)| x^2+y^2 \leqslant D=∣(x,y)∣x2+y2⩽ 1 } 1\} 1}, 且 a 2 + b 2 ≠ 0 a^2+b^2 \neq 0 a2+b2=0.