重积分及简单例题

一 二重积分

背景

几何意义:曲顶柱体的体积

image-20210512165346193

求解步骤

image-20210512165457712

本质:二重积分是一个,即柱体的有向面积。当f(x,y)>=0时候,其值等于以积分域D为底,以曲面z=f(x,y)为曲顶的曲顶柱体的体积。

物理意义:薄板的质量

1.1 概念与性质

定义

image-20210512165710448

注解 一般可认为dxdy是一个1*1的单位正方形区域,极限存在才能称这个极限是二重积分

image-20210513231530164

可积不一定连续,可能存在一个间断点

性质

**线性**

image-20210512170211557

**区域**

image-20210512170249908

**不等式**

image-20210512170338535

**积分中值**

image-20210512170415139

证明

image-20210512171453482

应用举例
D Δ = { ( x , y ) ∣ x 2 + y 2 ≤ t 2 } I = lim ⁡ t → 0 ∬ D cos ⁡ ( x 2 + y 2 ) d D t 2 = cos ⁡ ( α 2 + β 2 ) ⋅ 2 π 2 ⋅ t 2 t 2 = 2 π 2 cos ⁡ ( α 2 + β 2 ) = 2 π 2 D_Δ = \{(x,y)|x^2+y^2 \le t^2 \} \\ I = \lim_{t \rightarrow 0}\frac{\iint_D \cos(x^2+y^2)d_D}{t^2} \\ =\frac{\cos(α^2+β^2) \cdot 2 \pi ^2 \cdot t^2}{t^2} \\ = 2 \pi ^2 \cos(α^2+β^2)=2 \pi ^2 DΔ={(x,y)x2+y2t2}I=t0limt2Dcos(x2+y2)dD=t2cos(α2+β2)2π2t2=2π2cos(α2+β2)=2π2

区域对称性

y(左右对称,y相同看x)

image-20210512171736613

x(上下对称,x相同看y)

image-20210512171844683

线 、轮换对称性

依据
∫ ∫ D ( x , y ) f ( x , y ) d x d y = ∫ ∫ D ( y , x ) f ( y , x ) d y d x \int \int_{D_(x,y)} f(x,y)dxdy = \int \int_{D_(y,x)} f(y,x)dydx D(x,y)f(x,y)dxdy=D(y,x)f(y,x)dydx
y = x

image-20210512172215064

y = - x

image-20210512172329946

原点

若区域D关于原点(0,0)对称,若f(x,y)=f(-x,-y),则为偶(相加为2倍);f(x,y) = -f(-x,-y),则为奇(相加为0)。?

1.2 计算方法

步骤

  • 做出区域D图形,观察积分区域和被积函数是否可用极坐标
  • 观察对称性,根据奇偶性或y=x简化
  • 确定积分次序、上下限与积分方法

直角坐标法

想象成把面包切成一片片的过程,每一片的体积进行求和即为整个面包的体积,而每一片的体积也是使用积分进行求和得到。

x型计算过程推导

image-20210512173201841

x型:垂直x轴进行切片(竖切),先y后x,在某一点x0处,x0是不变的,y的值是与x有关,因此上下限为x=Yi(x)

image-20210512173458882

y型:垂直轴y进行切片,先x后y,在某一点y0处,y0是不变的,x的值是与y有关,因此上下限为y=Xi(y)

image-20210512173530187

极坐标法

适用情况

image-20221020162153784

定义
x = r cos ⁡ α ,   y = r sin ⁡ α , x 2 − y 2 = r 2 cos ⁡ 2 α , r d r d θ = d x d y x = r\cos α, \ y = r\sinα,x^2-y^2=r^2\cos2α,rdrdθ=dxdy x=rcosα, y=rsinα,x2y2=r2cos2α,rdrdθ=dxdy

(不在原点的,注意坐标启示)

【例题】

改积分次序

【例题】2011数学一

image-20221111231609225

1.3 常见圆的r

image-20210512190518855

【例题】

image-20221020223337291

r型推导

image-20210512190618287

θ型推导

扇形面积公式

image-20210512183256275

另外一种推导方式
S 扇 = 1 2 r 2 θ Δ Θ = 1 2 ( r + d r ) 2 d θ − 1 2 r 2 d θ = r d r d θ + 1 2 ( d r ) 2 θ ( 高阶无穷小 ) ∴ d Θ = r d r d θ = d x ⋅ d y S_扇 = \frac{1}{2}r^2θ \\ ΔΘ = \frac{1}{2}(r+dr)^2dθ-\frac{1}{2}r^2dθ \\ = rdrdθ+\frac{1}{2}(dr)^2θ (高阶无穷小) \\ \therefore dΘ = rdrdθ = dx \cdot dy S=21r2θΔΘ=21(r+dr)2dθ21r2dθ=rdrdθ+21(dr)2θ(高阶无穷小)dΘ=rdrdθ=dxdy
使用特征:被积函数f(x,y)中含义x2+y2 或 积分区域D中含有x2+y2时候可以考虑使用

image-20210512183934333

二 三重积分

背景

image-20210520142647248

2.1 概念与性质

定义

image-20210520143000885

性质

线性

image-20210520143328017

轮回对称性

image-20210520143457542

奇偶

中值

当几何意义是体积时候,可与二重积分相互转换。

2.2 计算方法

围成的是一个立体,不能代

直角坐标法

切片法

先二后一(先x、y后z) 适用于旋转体、f(x,y,z)=g(z)【后面的二重积分只计算面积即可】

简单理解:求出每一薄片(横着切片)的质量然后从上到下进行求和即为整个几何体的质量。每一次dz的z相当于是常数,根据区域函数可得x,y的范围。

计算推导过程

image-20210520144743148

例题 (每一片z是已知的,用于约束x、y的范围,下面r的上限应该是 sqrt{4-z2})

image-20210520153423267

铅直投影法

先一后二(先z后x、y)

简单理解:求出每一细棒(竖着切成火腿肠)的质量之和,然后对整个进行求和,即为几何体质量之和。(为什么要是投影的积分域?因为这样才包含了所有的竖列。如果是两个漏斗合并在一起,是不是要分开成两个计算?)

计算推导

image-20210520143850498

例题

image-20210520153403444

球面坐标变换

image-20221026130459416

dv=r^2sinδdrdθdδ

image-20210520153512620

坐标关系

image-20210520145107619

计算推导 注意 $x2+y2 = r^2 sin^2 φ $

image-20210520145350352

例题

image-20221026132232727

2

image-20210520153452971

柱面坐标变换

简单理解 定积分+极坐标下的二重积分,其实就是直角坐标法把二的部分改用为极坐标。

适用于被积函数里有圆,区域曲面有圆

计算推导

image-20210520144957311

例题

image-20221026125700977

三 应用

几何

image-20210512190837881

曲面面积即为当被积函数为1时的第一型曲面积分

3.1 质心与形心

质量中心(类似数学期望)也可称为重心,若是曲面则把dxdy换成dS即可

二维

d m m = f ( x , y ) d x d y ∬ D f ( x , y ) d x d y ( 质量占比 ) x ˉ = ∬ D x f ( x , y ) d x d y ∬ D f ( x , y ) d x d y = ∬ D x f ( x , y ) d x d y ∬ D f ( x , y ) d x d y \frac{dm}{m} = \frac{f(x,y)dxdy}{\iint_D f(x,y)dxdy} \quad (质量占比) \\ \bar x = \iint_D \frac{xf(x,y)dxdy}{\iint_Df(x,y)dxdy} = \frac{\iint_D xf(x,y)dxdy}{\iint_Df(x,y)dxdy} mdm=Df(x,y)dxdyf(x,y)dxdy(质量占比)xˉ=DDf(x,y)dxdyxf(x,y)dxdy=Df(x,y)dxdyDxf(x,y)dxdy

当f(x,y) = p = 常数时,形心即为质心。
x ˉ = ∬ D x p d Θ ∬ D p d x d y = p ∬ D x d Θ p ∬ D 1 d x d y = ∬ D x d Θ S D y ˉ = ∬ D y p d Θ ∬ D p d x d y = p ∬ D y d Θ p ∬ D 1 d x d y = ∬ D y d Θ S D \bar x =\frac{\iint_D xpdΘ}{\iint_D p dxdy} = \frac{p\iint_DxdΘ}{p \iint_D1 dxdy} = \frac{\iint_DxdΘ}{S_D} \\ \bar y =\frac{\iint_D ypdΘ}{\iint_D p dxdy} = \frac{p\iint_DydΘ}{p \iint_D1 dxdy} = \frac{\iint_DydΘ}{S_D} xˉ=DpdxdyDxpdΘ=pD1dxdypDxdΘ=SDDxdΘyˉ=DpdxdyDypdΘ=pD1dxdypDydΘ=SDDydΘ
转动惯量

image-20221103024909038

三维

image-20210520151836524

转动惯量(若是曲面,则换成二重积分+dS)

image-20210520151911375

引力

image-20221103024018740

应用举例(一般被积函数为x、y且几何中心好求时候可以使用逆公式)

image-20210512192329420

2

image-20221020223745837

【例题】2019数一

image-20221124234239740

四 基础题型

概念

image-20210512194807539

改次序

当被积函数不易积出的时候,把难积的部分作为常数,易积的放到右边。

e k x d x ,   cos ⁡ k x d x ,   sin ⁡ k x d x sin ⁡ x x ,   x 2 n e ± x 2 d x \begin{aligned} & e^{\frac{k}{x}}dx ,\ \cos \frac{k}{x}dx, \ \sin \frac{k}{x}dx \\ & \frac{\sin x}{x}, \ x^{2n}e^{\pm x^2}dx \end{aligned} exkdx, cosxkdx, sinxkdxxsinx, x2ne±x2dx
理解确定第二个积分的上下限函数:例如∫yx

  • 当y是确定的时候,左右两边的x是确定的
  • 因此∫x的上下限是关于y的函数,即x=g(y)
  • 当求完∫x后求∫y,必然是和y有关的函数,若还有x,是积不出的

image-20210513004717633

  1. 变积分限函数求导 [1,t]; [y,t]

image-20210513150704924

二重积分

步骤:画图—对称或奇偶(注意复杂函数)—直角或极坐标—定次序—计算 。若带有绝对值,则根据画出绝对值边界,化为为两个区域求解。

  1. 奇偶对称性

image-20210513213650246

image-20210513215027545

  1. 分段积分

image-20210513223640063

三重积分

image-20210520162447353

f ( y , z ) = 0 { x 2 + y 2 ≤ y 0 2 z = z 0 f ( x 2 + y 2 , z ) = 0 f(y,z)=0 \\ \begin{equation} \left\{ \begin{array}{lr} x^2+y^2\le y_0^2 \\ z=z_0 \end{array} \right. \end{equation} \\ f(\sqrt{x^2+y^2},z) = 0 f(y,z)=0{x2+y2y02z=z0f(x2+y2 ,z)=0

积分域图像

image-20210521130503139

image-20210521132357854

积分域图像

>> [X,Y] = meshgrid(-8:.5:8);
>> Z = sqrt(X.^2+Y.^2);
>> mesh(X,Y,Z)

image-20210521132429922

接力题典

入门

  1. 与极限结合

image-20210521145038724

image-20210521152616197

基础

  1. 换元

image-20211102093549466

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值