大家好,我是被白菜拱的猪。
一个热爱学习废寝忘食头悬梁锥刺股,痴迷于girl的潇洒从容淡然coding handsome boy。
文章目录
一、写在前言
第一次知道递归这个概念的时候,是在学斐波那契数列,然后还有一次是老师让我们打印电脑文件夹的目录结构,那时候老师说自己调用自己,咦,自己调用自己是什么意思呢?甚是不解,那时候对代码一窍不通,连创建一个类都不会,还在想System.out.println()是什么,随着编程能力的提高,发现递归不仅仅解决斐波那契数列。对递归也也有了深一层次的理解。
那么随着我的脚步,来探究递归到底是个啥?
二、递归
(一)递归介绍
1、递归概念
简单的来说递归(recursion)就是自己调用自己,将一个复杂的问题分解成相同规模的小问题,从要解决的问题出发,一直分解成已知的小问题,然后逐级返回,直到得到最大求解问题的解,有去有回,假如没个停止的条件,一直调用自己就会出现stackoverflow。
另外与递归相似的还有一个迭代(iteration),迭代是基于已有的值利用递推公示去推出要解的值,递归是A调用A,迭代是A重复调用B,我们接触最简单运用跌倒的场景就是求1-100的和。
迭代可以转换为递归,递归不一定能转化为迭代。除了这两个概念,后面还会介绍一种算法思想,动态规划,我认为是对递归的一种升级。
2、递归调用机制(java)
在这里通过一个简单的打印问题的例子对递归调用机制进行叙述。
package com.codingboy.recursion;
/**
* @author: ljl
* @date: 2020/8/10 14:04
* @description:
*/
public class RecursionTest {
public static void main(String[] args) {
test(4);
}
public static void test(int n) {
if (n > 2) {
test(n - 1);
}
System.out.println("n=" + n);
}
}
运行机制:
在jvm中分为栈区堆区和常量区,每次执行一个方法时,就会开辟一个空间(栈帧),每个空间的变量时独立的。
步骤:
main方法就会在栈区创建一个栈帧,在这个空间中,执行到了test(4)方法就会为这个方法再次创建一个栈帧,直到n=2,执行完这个方法之后,这个栈帧出栈,然后执行栈顶的方法,这样下去,知道main方法中程序执行完毕,结束程序。
所以最后的打印结果是n=2,n=3,n=4。
3、解决的问题
- 各种数学问题如八皇后,汉诺塔,迷宫求解,阶乘问题
- 各种算法:快排,归并,二分查找,分治
- 各种使用到栈的问题,也可以使用递归
4、注意事项
- 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
- 方法的局部变量是独立的,不会相互影响, 比如n变量
- 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
- 递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死龟了:)
- 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。
递归一定要有个出口,就像while循环一定要有个退出条件一样。
(二)迷宫求解(递归)
1、问题描述
这里我们将问题简单化,不要求求得最短路径,而是找到一个路径即可,最短路径又涉及到最后的广度优先遍历和深度优先遍历。
talk is shit,show me the code。
2、代码实现
package com.codingboy.recursion;
/**
* @author: ljl
* @date: 2020/8/10 21:18
* @description:
*/
public class Maze {
public static void main(String[] args) {
//地图初始化
int[][] map = new int[6][5];
//初始化路障,1代表路障
for (int i = 0; i < 6; i++) {
map[i][0] = 1;
map[i][4] = 1;
}
for (int i = 0; i < 5; i++) {
map[0][i] = 1;
map[5][i] = 1;
}
map[2][1] = 1;
//打印地图
for (int i = 0; i < 6; i++) {
for (int j = 0; j < 5; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
findRoad(map,1,1);
//打印地图
System.out.println("----走完之后----");
for (int i = 0; i < 6; i++) {
for (int j = 0; j < 5; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
//map代表地图,i代表点的横坐标,j代表纵坐标,1-代表障碍,2-代表能走,3-代表走了但走不通
public static boolean findRoad(int[][] map, int i,int j) {
//递归,假如到了终点就退出
if (map[4][3] == 2) {
return true;
}
//找路,从下,左,上,右
if(map[i][j] == 0) { //说明这条路没有走过
//假设该点可以走
map[i][j] = 2;
//看其他方向是否能够走,能走就return true
if (findRoad(map, i, j + 1)) {
return true;
} else if (findRoad(map, i + 1, j)) {
return true;
} else if (findRoad(map, i, j - 1)) {
return true;
} else if (findRoad(map, i - 1, j)) {
return true;
} else {
//说明是死路走不通
map[i][j] = 3;
return false;
}
}
return false;
}
}
//找路
运行结果:
(三)八皇后问题
1、问题描述
八皇后问题介绍
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
2、求解思路
- 第一个皇后先放第一行第一列
- 第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
- 继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
- 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
- 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤
说明:理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] = {0 , 4, 7, 5, 2, 6, 1, 3} //对应arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第i+1个皇后,放在第i+1行的第val+1列
3、代码实现
package com.codingboy.recursion;
import javax.swing.*;
/**
* @author: ljl
* @date: 2020/8/10 18:22
* @description:
*/
public class EightQueen {
//定义有多少个皇后
int max = 8;
//使用一维数组存储皇后的位置 array[i] = value; i代表行,value代表列,即(i,value)是皇后所在位置
int[] array = new int[max];
//记录有多少中情况
static int count = 0;
public static void main(String[] args) {
EightQueen eightQueen = new EightQueen();
eightQueen.check(0);
System.out.println("有多少种情况:" + count);
}
//打印数组
public void print() {
//用来记录有多少种情况。
count++;
for (int i = 0; i < array.length ; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
//判断皇后是否满足位置,即是否在同一列或者在一斜线上
public boolean judge(int n) {
for (int i = 0; i < n; i++) {
//array[i] == array [n] 表示在同一列上
//Math.abs(n - i) == Math.abs(array[n] = array[i])斜率为1,表示在同一斜线上
if(array[i] == array [n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
return false;
}
}
return true;
}
//开始放皇后
public void check(int n) {
if(n == max) { //说明8个皇后已经安排妥当,打印
print();
return;
}
//从第一列开始遍历
for (int i = 0; i < max ; i++) {
array[n] = i;
if(judge(n)) { //如果该位置满足就放在这个位置,然后考虑下一行
check(n+1);
}
//如果该位置不满足,就判断下一列
}
}
}
3、代码总结
首先从第一行第一列开始,判断是否满足,假如满足了就放第二个皇后,check就是放皇后,不满足就判断第二列是否满足。我们通过这个代码可以看到,递归的效率其实是不高的,92种方案,要进行一万多次判断。
三、结束语
学完之后,想起了社团里面教学弟学妹们递归,还是拿斐波那契数列举例,我们班的一个人说把数字跳到4000(不知道具体是几,让我试试)这不故意挑事嘛,当数字变大时,这个时间会非常非常的久,因为他每一次执行都要到基本条件。所以递归一不留神就会出现内存溢出的情况。
做人腻还是要低调,不要盲目的过于自信。也不要故意找别人茬,与人交往要真诚换真心。