MySql笔记(一)基础及索引原理

本文深入解析MySQL中的索引原理,包括磁盘存储机制、B树与B+树的区别、Hash索引的应用场景,以及InnoDB与MyISAM存储引擎的特点。同时介绍了不同类型的索引,如主键索引、非主键索引、联合索引和覆盖索引的工作原理。
摘要由CSDN通过智能技术生成

磁盘的存储原理

  • 以机械硬盘为例,数据是存储在盘片上的,当MySQL应用程序调用内核提供的IO函数进行IO操作时内核会找到对应的驱动程序驱动磁头,由于不同的数据也可能分布不同磁道的不同扇区上,因此,需要驱动磁头进行寻道,找到对应的位置扫描数据,把对应的数据加载到内存中,这也是一次IO操作的大概流程,而进行寻道操作便是这次操作最为耗时的部分。
  • MySQL的innodb中有一个参数叫做innodb_page_size,他的值为16384,表示它一次性可以读取4×4k数据,这就是innodb中的页,也是它存储数据的最小单位,在B+树中每一个节点就存储为一页,每次IO操作也会读取一页的数据。
  • 因此,MySQL进行查询操作时候的性能,主要就是看它进行了多少次磁盘IO,如果数据量大或者在磁盘上过于分散而占用了多个磁道,那么就需要多次IO操作,如大数据量的全表扫描。那么,在大数据的表中寻找特定的一些数据,便可以通过一些(索引)数据结构指定这些数据的查询地址,直接访问对应的地址,这样就能避免全表扫描。

索引中的数据结构

  • 普通的二叉树
    我们可以使用树来建立索引,最简单的二叉树,由于平衡性完全不能保障,极端情况下可能会使其成为一条链表,所以这个是不行的。
    因为二叉树的深度每深一层,意味着需要多进行一次IO操作,所以要深度尽可能的小,那么就需要需要保证一定的平衡性,如avl树,红黑树等,都能保证一定的平衡性,那么问题又来了,虽然平衡性得到了保障,但是每一次IO操作都只读取节点上的一个键,而MySQL一次IO操作可以读取4×4k的数据,只读取一个键显然太浪费了,那么如果一个节点中包含多个键,这样的话,不仅可以读满一个innodb_page_size,而且树的深度也可以大大降低,所以就引出了B树。

  • B树
    B树是一个n叉树,数据库中的B树,每个节点中都包含多个指针、数据和键值,且一个键只出现在一个节点中,他的叶节点的指针为空,且都有相同的深度,节点中的键值从左到右依次递增,但是由于数据直接存储在节点中,如果数据占用比较大,每次IO操作读取的节点的键的数量就会更受限制,因此,索引建立时,往往需要更深的深度,这就是B树存在的问题。那么,如果说只有叶子节点中才存放数据,则前面的节点中便能存放更多的键,树的深度会低,而这就是B+树。
    如图是一般数据结构中的B树(图中每个节点没有显示data):
    在这里插入图片描述

  • B+树
    相对于B树,在innodb中的B+树的非叶子节点不存储数据,只存储键值,这样便能够保证树的最小深度,并且所有的叶子节点都有一个双向链指针,这样可以在比如使用索引区间查询时,如果查询的区间分布在几个磁盘块上,可以直接通过指针访问到后面一个磁盘块,而不需要再次通过索引访问到这个磁盘块,这样可以提高性能。
    如图是一般数据结构中的B+树(图中叶子节点没有显示data和双向指针):
    在这里插入图片描述

  • Hash
    目前MySQL上的innodb支持两种索引结构,一种是B+树,一种是Hash,那么,这两种数据结构的索引有什么优劣呢,而通过哈希表来建立索引,由于哈希表是直接通过键的hashcode来确定存储位置的,所以,哈希表的查询效率是O(1),效率比B+树要高,但是如果存在很多相同的键值,便会产生大量的哈希冲突,导致查询效率降低,不过这不是主要的问题,而是当需要通过索引进行区间查找时,由于B+树都满足了键值都是从左到右依次增大的规律,因此,在区间查找时可以利用这个规律通过比较键大小来进行查找,而哈希表本身只使用键的hashcode来查找数据,和键值的大小没有任何关系,因此,通过访问hashcode的映射地址遍历访问一遍数据还不如直接进行全表扫表。使用模糊查询类似。

MyIsam和Innodb引擎

  • MyIsam存储引擎
    MyIsam存储引擎支持全文索引,不支持事务、行级锁和外键。其使用的是非聚集索引,索引在叶子节点上存储的是数据的地址,并没有直接存放数据,因此可以在文件中看到,MyIsam有.MYI文件用来存储索引,有.MYD用来存储数据,因此在通过索引访问一条数据的时候,先通过.MYI文件访问到该数在.MYD文件中的位置,再从.MYD文件中获取数据。
  • Innodb存储引擎
    Innodb存储引擎不支持全文索引,支持事务、行级锁和外键。其使用的是聚集索引,主键索引在叶子节点上存储的是该键对应的行数据,非主键索引在叶子节点上存储的是对应的主键值。因此在使用非主键索引访问该行的数据时,首先要通过非主键索引查询得到主键值,再通过主键索引查询得到数据。

Innodb中的各种索引

  • 主键索引
    在Innodb中,一个表一定要有一个聚集索引,因为数据行在存储的时候需要按照一定的顺序从小到大排列,而当没有指定主键时,会自动使用一个没有重复的列作为排列的依据进行聚集,如果没有符合要求的列,innodb会自动添加一列来作为聚集索引,或者当指定了主键后,会将主键作为聚集索引,再物理磁盘中进行重新排序。所以,在修改主键或者添加新的一行数据的时候,有可能需要对索引结构进行重新调整,因此常被修改的字段不推荐被定义为主键。

  • 非主键索引
    在Innodb中,除了主键索引以外的所有索引都是非聚集索引,他们的索引顺序与数据行在磁盘中的存储顺序没有对应关系,因此,在修改一行的非主键索引时,数据行的数据不需要改变。

  • 联合索引
    通过两个或以上字段建立的索引就是联合索引,联合索引的原理:
    联合索引的大小比较规则是,先比较第一个字段的ASCII码值,如果通过第一个字段已经比较出大小了,便不会再比较后面的字段,如果第一个字段ASCII码值相同,再比较第二个字段的ASCII码值,依次类推,只有前面的字段ASCII码值相同,才会比较后面的字段。所以说,一个联合索引,后面字段的比较一定是建立在前面字段比较的基础上来进行的。
    因此,这里有一个最左前缀原则:在联合索引中,不能跨越左边的索引去比较右边的索引。
    建立name、age、grade三个字段的联合索引,主键为生日,如图所示(理解意思就好):
    在这里插入图片描述

  • 覆盖索引
    如果查询查询结果是主键或者是联合索引中的字段,那么就不用回表操作,可以直接返回结果,因为该结果可以直接通过查询条件中的索引或者该联合索引获取到,这样可以减少IO操作的次数。

一些问题

  • 为什么推荐使用自增主键
    1.在innodb中,int类型的索引可以直接比较大小,而其他类型如string类型的索引,在比较的时候需要对每个字符转换为ASCII码进行比较,这里就在比较之前都存在一些运算,效率更低。
    2.由于主键是一个聚集索引,磁盘中的数据行是依据他的索引顺序进行排列的,如果他不是一个自增索引,可能新插入的数据的主键值比目前最大的主键值要小,那么就要对索引和数据行存储位置进行重排序,这样会消耗大量的性能,而使用自增主键,新插入的数据直接放到最后面即可,就不需要进行重排序了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值