8灰色预测- 灰色模型GM(1,1)

本文介绍了灰色预测理论中的基本模型GM(1,1),包括其定义、累加过程、灰导数与白化背景值的定义,以及如何通过最小二乘法求解参数。后续讨论了GM(1,1)模型的白化型,预测过程,并强调了白化型模型与实际微分方程的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

灰色预测- 灰色模型GM(1,1)

   首先说说 G M ( 1 , 1 ) GM(1,1) GM(1,1)是什么?一般定义为, G M ( m , n ) GM(m,n) GM(m,n) m m m阶, n n n个变量的微分方程。 G M ( 1 , 1 ) GM(1,1) GM(1,1)那就好理解了。前一篇博客说到了生成数的原理,现在就开始介绍灰色预测理论中最基本的模型 G M ( 1 , 1 ) GM(1,1) GM(1,1)

GM(1,1)模型

   原始数列 x ( 0 ) = ( x ( 0 ) ( 1 ) , x ( 0 ) ( 2 ) , . . . , , x ( 0 ) ( n ) ) x^{(0)}=(x^{(0)}(1), x^{(0)}(2),...,, x^{(0)}(n) ) x(0)=(x(0)(1),x(0)(2),...,,x(0)(n)),累加得到的数列为 x ( 1 ) = ( x ( 1 ) ( 1 ) , x ( 1 ) ( 2 ) , . . . , , x ( 1 ) ( n ) ) x^{(1)}=(x^{(1)}(1), x^{(1)}(2),...,, x^{(1)}(n) ) x(1)=(x(1)(1),x(1)(2),...,,x(1)(n)),其中,
x ( 1 ) ( k ) = ∑ i = α k x ( 0 ) ( i ) , k = α , α + 1 , . . . n (1) x^{(1)}(k)=\sum_{i=\alpha}^k x^{(0)}(i),k=\alpha,\alpha+1,...n \tag{1} x(1)(k)=i=αkx(0)(i),k=α,α+1,...n(1)
其中 α ≤ n \alpha \le n αn,且为正整数, ( 1 ) (1) (1)式中,取 α = 1 \alpha = 1 α=1,称为一般累加过程,记作 1 − A G O 1-AGO 1AGO。定义 x ( 1 ) x^{(1)} x(1)的灰导数(实际上就是累减),为:
d ( k ) = x ( 0 ) ( k ) = x ( 1 ) ( k ) − x ( 1 ) ( k − 1 ) (2) d (k)=x^{(0)}(k)=x^{(1)}(k)- x^{(1)}(k-1) \tag{2} d(k)=x(0)(k)=x(1)(k)x(1)(k1)(2)
   取 x ( 1 ) x^{(1)} x(1)的等权重紧邻值,
z ( 1 ) ( k ) = 0.5 x ( 1 ) ( k ) + 0.5 x ( 1 ) ( k − 1 ) , k = 2 , 3 , . . . , n (3) z^{(1)}(k)=0.5 x^{(1)}(k)+0.5 x^{(1)}(k-1) ,k=2,3,...,n \tag{3} z(1)(k)=0.5x(1)(k)+0.5x(1)(k1)k=2,3,...,n(3)

   定义灰微分方程 G M ( 1 , 1 ) GM(1,1) GM(1,1)
d ( k ) + a z ( 1 ) ( k ) = b (4) d(k)+az^{(1)}(k)=b \tag{4} d(k)+az(1)(k)=b(4)
即:
x ( 0 ) ( k ) + a z ( 1 ) ( k ) = b (5) x^{(0)}(k)+az^{(1)}(k)=b \tag{5} x(0)(k)+az(1)(k)=b(5)
其中 x ( 0 ) ( k ) x^{(0)} (k) x(0)(k) 称为灰导数,a 称为发展系数, z ( 1 ) ( k ) z^{(1)} (k) z(1)(k)称为白化背景值, b b b 称为灰作用量。将 k = 2 , 3 , . . . , n k=2,3,...,n k=2,3,...,n的数据带入上面的 ( 4 ) (4) (4)式,得到:
{ x ( 0 ) ( 2 ) + a z ( 1 ) ( 2 ) = b x ( 0 ) ( 3 ) + a z ( 1 ) ( 3 ) = b . . . . x ( 0 ) ( n ) + a z ( 1 ) ( n ) = b (6) \left\{ \begin{matrix} x^{(0)}(2)+az^{(1)}(2)=b \\ x^{(0)}(3)+az^{(1)}(3)=b \\ .... \\ x^{(0)}(n)+az^{(1)}(n)=b \\ \end{matrix} \right. \tag{6} x(0)(2)+az(1)(2)=bx(0)(3)+az(1)(3)=b....x(0)(n)+az(1)(n)=b(6)

   将上面写成矩阵的形式,令

Y = ( x ( 0 ) ( 2 ) , x ( 0 ) ( 3 ) , . . . , x ( 0 ) ( n ) ) T Y = (x^{(0)}(2),x^{(0)}(3),...,x^{(0)}(n))^T Y=(x(0)(2),x(0)(3),...,x(0)(n))T

B = ( − z ( 1 ) ( 2 ) 1 − z ( 1 ) ( 3 ) 1 ⋮ ⋮ − z ( 1 ) ( n ) 1 ) B =\begin{pmatrix} -z^{(1)}(2) &1 \\ -z^{(1)}(3) &1 \\ \vdots & \vdots \\ -z^{(1)}(n) &1 \\ \end{pmatrix} B=z(1)(2)z(1)(3)z(1)(n)111

u = ( a b ) T u = \begin{pmatrix} a &b \end{pmatrix}^T u=(ab)T

Y Y Y为数据向量, B B B 为数据矩阵, u u u 为参数向量,则 G M ( 1 , 1 ) GM(1,1) GM(1,1)模型可以表示为矩阵方程 Y = B u Y = Bu Y=Bu ( 6 ) (6) (6)式可以看出,参数个数为 2 2 2个,方程个数大于 2 2 2,因此利用最小二乘求解待解未知数 u u u。最小二乘(使得 J ( u ^ ) = ( Y − B u ^ ) T ( Y − B u ^ ) J(\hat u)=(Y-B\hat u)^T(Y-B\hat u) J(u^)=(YBu^)T(YBu^)最小)解为:
u ^ = ( a ^ , b ^ ) = ( B T B ) − 1 B T Y (7) \hat u=(\hat a ,\hat b)=(B^TB)^{-1}B^TY \tag{7} u^=(a^,b^)=(BTB)1BTY(7)

GM(1,1)的白化型

   对于 G M ( 1 , 1 ) GM(1,1) GM(1,1)的灰微分方程 ( 5 ) (5) (5),如果将 x ( 0 ) ( k ) x^{(0)} (k) x(0)(k) 的时刻 k = 2 , 3 , . . . n k = 2,3,... n k=2,3,...n视为连续连续的变量 t ,则数列 x ( 1 ) x^{(1)} x(1)就可以视为时间 t t t 的函数,记为 x ( 1 ) = x ( 1 ) ( t ) x^{(1)} = x^{(1)} (t) x(1)=x(1)(t) ,并让灰导数 x ( 0 ) ( k ) x^{(0)} (k) x(0)(k) 对应于导数 d x ( 1 ) d t \frac{dx^{(1)}}{dt} dtdx(1),背景值 z ( 1 ) ( k ) z^{(1)} (k) z(1)(k) 对应于 x ( 1 ) ( t ) x^{(1)} (t) x(1)(t) 。于是得到 G M ( 1 , 1 ) GM(1,1) GM(1,1)的灰微分方程对应的白微分方程为( G M ( 1 , 1 ) GM(1,1) GM(1,1)的白化型):

d x ( 1 ) d t + a x ( 1 ) = b (8) \frac{dx^{(1)}}{dt} +ax^{(1)}=b \tag{8} dtdx(1)+ax(1)=b(8)

   需要注意的是, G M ( 1 , 1 ) GM(1,1) GM(1,1)的白化型并不是 G M ( 1 , 1 ) GM(1,1) GM(1,1)的灰微分方程离散得到的,仅仅是一种类推。 G M ( 1 , 1 ) GM(1,1) GM(1,1)的白化型是一个真正的微分方程,如果白化型模型精度高,则表明所用数列建立的模型 G M ( 1 , 1 ) GM(1,1) GM(1,1)与真正的微分方程模型吻合较好,反之亦然。

GM(1,1)预测

   通过将( G M ( 1 , 1 ) GM(1,1) GM(1,1)的白化型方程离散,得到 x ( 1 ) x^{(1)} x(1)的预测值 x ^ ( 1 ) \hat x^{(1)} x^(1)

x ^ ( 1 ) ( k + 1 ) = ( x ( 0 ) ( 1 ) − b a ) e − a k + b a (9) \hat x^{(1)} (k+1) = (x^{(0)} (1)-\frac{b}{a})e^{-ak}+\frac{b}{a} \tag{9} x^(1)(k+1)=(x(0)(1)ab)eak+ab(9)

   x ( 1 ) x^{(1)} x(1)是由 x ( 0 ) x^{(0)} x(0)累加得到的,因此可以通过累减 x ^ ( 1 ) \hat x^{(1)} x^(1)得到 x ( 0 ) x^{(0)} x(0)的预测值 x ^ ( 0 ) \hat x^{(0)} x^(0),即:

x ^ ( 0 ) ( k + 1 ) = x ^ ( 1 ) ( k + 1 ) − x ^ ( 1 ) ( k ) (10) \hat x^{(0)} (k+1)= \hat x^{(1)} (k+1)-\hat x^{(1)} (k) \tag{10} x^(0)(k+1)=x^(1)(k+1)x^(1)(k)(10)

   本次就说到这,接下来说对 G M ( 1 , 1 ) GM(1,1) GM(1,1)模型的校验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cuntou0906

玛莎拉蒂是我的目标!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值