难度中等406
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers nums
representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: nums = [2,3,2]
Output: 3
Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
Example 2:
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 3:
Input: nums = [0]
Output: 0
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
-
class Solution { public: int rob(vector<int>& nums) { int n = nums.size(); if(n==1)return nums[0]; int dp[101]; fill(dp, dp + 101, 0); int dp1[101]; fill(dp1, dp1 + 101, 0); for (int i = 1; i <n; i++) { int k=i-1; dp[i] = dp1[i - 1] + nums[k]; dp1[i] = max(dp1[i - 1], dp[i - 1]); } int Ans = max(dp[n-1], dp1[n-1]); fill(dp, dp + 101, 0); fill(dp1, dp1 + 101, 0); for (int i = 2; i <=n; i++) { dp[i] = dp1[i - 1] + nums[i-1]; dp1[i] = max(dp1[i - 1], dp[i - 1]); } int Ans1=max(dp[n],dp1[n]); return max(Ans1,Ans); } };
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 1)
return nums[0];
if(nums.size()==0)
return 0;
int first = nums[0];
int second = max(nums[0], nums[1]);
int result = max(first,second);
if (nums.size() == 2)
return result;
int result2=0;
for (int i = 2; i < nums.size()-1; i++)
{
result= max(second, first + nums[i]);
first = second;
second = result;
}
first =nums[1];second=max(nums[1],nums[2]);
for (int i = 3; i < nums.size(); i++)
{
result2= max(second, first + nums[i]);
first = second;
second = result2;
}
return max(result,result2);
}
};