红黑树(上):为什么工程中都用红黑树这种二叉树???

前面的文章中依次讲了树、二叉树、二叉查找树。二叉查找树是最常用的一种二叉树,支持快速插入、删除,查找操作,各个操作时间复杂度和树的高度成正比,理想情况下时间复杂度为O(logn)。

不过二叉查找树在频繁的动态更新过程中,可能会出现树的高度远大于logn的情况,从而导致各个操作效率下降。极端情况下二叉树退化为链表,时间复杂度退化到O(n)。想要解决这个复杂度退化的问题,需要设计一种平衡二叉查找树。

大部分树中,但凡讲到平衡二叉查找树,就拿红黑树举例子。在工程中很多用到平衡二叉查找树的地方都会用到红黑树,那么为什么工程中喜欢使用红黑树,而不是其他平衡二叉查找树呢???

什么是"平衡二叉查找树"?

平衡二叉树严格意义上来说是这样的:二叉树中任意一个节点的左右子树的高度相差不能大于1。完全二叉树、满二叉树其实都是平衡二叉树,但是非完全二叉树也有可能是平衡二叉树。
在这里插入图片描述
平衡二叉查找树不仅满足上面平衡二叉树的定义,还满足二叉查找树的特点。最先被发明的平衡二叉查找树是AVL树,它严格符合刚讲到的平衡二叉查找树的定义,即任何节点的左右子树高度相差不超过1,是一种高度平衡二叉查找树。

但是很多平衡二叉查找树其实并没有严格符合上面的定义(树中任意一个节点的左右子树的高度相差不能大于1),如下面要讲到的红黑树,从根节点到各个叶子节点的最长路径,有可能会比最短路径大一倍。。

平衡二叉查找树中“平衡”的意思是:其实就是让整棵树左右看起来比较对称、比较平衡,不要出现左子树很高、右子树很矮的情况。这样就能让整棵树的高度相对来说低一些,相应的插入、删除、查找等操作的效率要高一些。

因此如果现在设计一个新的平衡二叉查找树,只要树的高度不比logn大很多,尽管不符合前面讲的严格的平衡二叉查找树的定义,但仍然可以说这是一个合格的平衡二叉查找树。

如何定义一棵“红黑树?”

平衡二叉查找树其实很多,如Splay Tree(伸展树)、Treap(树堆)等,但是提到平衡二叉查找树听到的基本都是红黑树。它出镜率甚至要高于“平衡二叉查找树”这几个字,有时甚至默认平衡二叉查找树就是红黑树,现在就来看看这个“明星树”。

红黑树是一种不严格的平衡二叉查找树,它的定义是不严格符合平衡二叉查找树的定义的,那么红黑树究竟是如何定义的的???

顾名思义,红黑树中的节点,一类被标记为黑色,一类被标记为红色。除此之外,一棵红黑树还需要满足这样几个要求:

  • 根节点是黑色的
  • 每个叶子节点都是黑色的空节点(NIL),就是说叶子节点不存储数据
  • 任何相邻的节点都不能同时为红色,就是说红色节点是被黑色节点隔开的
  • 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点
    在这里插入图片描述

为什么说红黑树是“近似平衡”的???

平衡二叉查找树的初衷就是为了解决二叉查找树因为动态更新导致的性能退化问题。
平衡等价为性能不退化;近似等价为性能不会退化的太严重。

一棵及其平衡的平衡二叉树的高度是logn,为了证明红黑树的近似平衡,只要证明是否趋近于logn就行了。

红黑树高度不是很好分析,来一步一步推导:

首先来看如果我们将红色节点从红黑树中去掉,那单纯包含黑色节点的红黑树的高度是多少呢???

红色节点删除之后,有些节点就没有父节点了,它们会直接拿这些节点的祖父节点作为父节点,因此之前的二叉树就变成了四叉树。。
在这里插入图片描述
前面红黑树的定义里有这么一条:从任意节点到可达的叶子节点的每个路径包含相同数目的黑色节点。从四叉树中取出某些节点,放到叶节点位置,四叉树就变成了完全二叉树。因此仅包含黑色节点的四叉树的高度,比包含相同节点个数的完全二叉树的高度还要小。

完全二叉树高度近似logn,这里的四叉黑树的高度要低于完全二叉树,因此去掉红色节点的黑树的高度也不会超过logn。

现在知道了只包含黑色节点的黑树的高度,我们现在把红色节点加回去,高度会变成多少呢???

从上面红黑树的例子和定义来看,在红黑树中红色节点不能相邻,就是说有一个红色节点就要至少有一个黑色节点,将它跟其他红色节点隔开。红黑树中包含最多黑色节点的路径不会超过logn,因此加入红色节点之后最长路径不会超过2logn,就是说红黑树的高度近似2logn。

所以,红黑树的高度只比高度平衡的AVL树的高度(logn)仅仅大了一倍,在性能上,下降得不多,这样推导出来的结果不够精确,实际上红黑树的性能更好。

总结

那么为什么工程开发中,大家都喜欢用红黑树这种平衡二叉查找树呢?

前面提到 Treap、Splay Tree,绝大部分情况下它们操作的效率都很高,,但是也无法避免极端情况下时间复杂度的退化,尽管这种情况出现的概率不大但是对于单词操作时间比较敏感的场景来说它们并不适用。

AVL树是一种高度平衡的二叉树,所以查找的效率非常高,但是有利就有弊,AVL树为了维持这种高度的平衡,就要付出更多代价。每次插入,删除都要做调整,就比较复杂、耗时,所以,对于有频繁的插入、删除操作的数据集合,使用AVL树的代价就有点高了。

红黑树只是做到了近似平衡,并不是严格的平衡,所以在维护平衡成本上,要比AVL树要低。

所以,红黑树的插入、删除、查找各种操作性能都比较稳定。对于工程应用来说,要面对各种异常情况,为了支撑这种工业级的应用,我们更倾向于这种性能稳定的平衡二叉查找树。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值