transformer使用多变量时序多输出回归预测代码

import argparse
from ast import arg
import torch
import math
import numpy as np
import pandas as pd
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import copy
import os
import sys
import torch.utils.data as Data
#from optuna import TrialState
import optuna

#from get_data import get_mape
#from model import TransformerModel

from itertools import chain
#from sklearn.preprocessing import MinMaxScaler
import torch
from scipy.interpolate import make_interp_spline
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import optuna
from matplotlib import pyplot
from tqdm import tqdm
from torch.optim.lr_scheduler import StepLR
from tqdm import tqdm
#from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error,mean_absolute_percentage_error
import torch
from torch import nn
‘’’
from sklearn.metrics import mean_squared_error # 均方误差
from sklearn.metrics import mean_absolute_error # 平方绝对误差
from sklearn.metrics import r2_score # R square
‘’’
#from get_data import nn_seq
#from args import args_parser
#from util import train, test, get_best_parameters
plt.rcParams[‘font.sans-serif’]=[‘SimHei’] #用来正常显示中文标签
plt.rcParams[‘axes.unicode_minus’]=False #用来正常显示负号 #有中文出现的情况,需要u’内容’

import os
os.environ[“KMP_DUPLICATE_LIB_OK”]=“TRUE”
path = os.path.dirname(os.path.realpath(file))
#filename=r’/data/森源张鼓匠数据2022-7至2023-6删除限电.csv’
device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)

def args_parser():
parser = argparse.ArgumentParser()
parser.add_argument(‘–epochs’, type=int, default=10, help=‘epochs’)
parser.add_argument(‘–seq_len’, type=int, default=16, help=‘seq len’)
parser.add_argument(‘–input_size’, type=int, default=27, help=‘input dimension’)
parser.add_argument(‘–d_model’, type=int, default=8, help=‘input dimension’)
parser.add_argument(‘–output_size’, type=int, default=16, help=‘output dimension’)
parser.add_argument(‘–lr’, type=float, default=0.0008, help=‘learning rate’)
parser.add_argument(‘–batch_size’, type=int, default=64, help=‘batch size’)
parser.add_argument(‘–optimizer’, type=str, default=‘adam’, help=‘type of optimizer’)
parser.add_argument(‘–device’, default=torch.device(“cuda” if torch.cuda.is_available() else “cpu”))
parser.add_argument(‘–weight_decay’, type=float, default=1e-4, help=‘weight decay’)
parser.add_argument(‘–step_size’, type=int, default=1, help=‘step size’)
parser.add_argument(‘–gamma’, type=float, default=0.25, help=‘gamma’)

args = parser.parse_args()

return args

def nn_seq(args):
seq_len, batch_size, pred_step_size= args.seq_len, args.batch_size, args.output_size
filename = ‘/data/data.csv’
filepath = os.path.dirname(os.path.realpath(file)) + filename
data = pd.read_csv(filepath, parse_dates=True, index_col=r’时间’)
data = data.fillna(‘0’)
data[“cos预测风向”]=np.cos(data[“预测风向(°)”].values.astype(‘float’))
data[“sin预测风向”]=np.sin(data[“预测风向(°)”].values.astype(‘float’))
data[“实际功率”] = data[“实际功率(MW)”]
#实际功率(MW),平均风速1(m/s),最大风速1(m/s),极大风速1(m/s),平均风向1(°),平均风速2(m/s),最大风速2(m/s),极大风速2(m/s),平均风向2(°),平均风速3(m/s),最大风速3(m/s),极大风速3(m/s),平均风向3(°),平均风速4(m/s),最大风速4(m/s),极大风速4(m/s),平均风向4(°),平均风速5(m/s),最大风速5(m/s),极大风速5(m/s),平均风向5(°),平均风速6(m/s),最大风速6(m/s),极大风速6(m/s),平均风向6(°),平均气温(℃),平均湿度(%),平均气压(hPa),平均空气密度(kg/m3),预测风速(m/s),预测风向(°),预测气温(℃),
data = data[[“实际功率”,“平均风速1(m/s)”,“最大风速1(m/s)”,“极大风速1(m/s)”,“平均风向1(°)”,“平均风速2(m/s)”,“最大风速2(m/s)”,“极大风速2(m/s)”,“平均风向2(°)”,“平均风速3(m/s)”,“最大风速3(m/s)”,“极大风速3(m/s)”,“平均风向3(°)”,“平均风速4(m/s)”,“最大风速4(m/s)”,“极大风速4(m/s)”,“平均风向4(°)”,“平均风速5(m/s)”,“最大风速5(m/s)”,“极大风速5(m/s)”,“平均风向5(°)”,“预测风速(m/s)”,“预测风向(°)”,“预测气温(℃)”]]
#data = data[[“实际功率”,“预测风速(m/s)”,“预测风向(°)”,“预测气温(℃)”,“cos预测风向”,“sin预测风向”]]#
train = data[:‘2024-01-01 00:15:00’]
val = data[‘2023-12-01 00:15:00’:‘2024-01-01 00:15:00’]
test = data[‘2023-12-31 16:30:00’:]

result=pd.DataFrame(columns=['实际功率', '真实值', '预测值'])
result['实际功率']=test['实际功率']['2024-01-01 00:15:00':]#[96+96-1:]
print(train.shape,val.shape,test.shape)
print(train.shape,test.shape)

num_nodes=24#3
''' 
scaler1 = MinMaxScaler()
train.iloc[:,0] = scaler1.fit_transform(train.iloc[:,0].values.reshape([-1,1])).reshape([-1])
scaler2 = MinMaxScaler()
train.iloc[:,1] = scaler2.fit_transform(train.iloc[:,1].values.reshape([-1,1])).reshape([-1])
scaler3 = MinMaxScaler()
train.iloc[:,2] = scaler3.fit_transform(train.iloc[:,2].values.reshape([-1,1])).reshape([-1])
scaler4 = MinMaxScaler()
train.iloc[:,3] = scaler4.fit_transform(train.iloc[:,3].values.reshape([-1,1])).reshape([-1])

val.iloc[:,0] = scaler1.transform(val.iloc[:,0].values.reshape([-1,1])).reshape([-1])
val.iloc[:,1] = scaler2.transform(val.iloc[:,1].values.reshape([-1,1])).reshape([-1])
val.iloc[:,2] = scaler3.transform(val.iloc[:,2].values.reshape([-1,1])).reshape([-1])
val.iloc[:,3] = scaler4.transform(val.iloc[:,3].values.reshape([-1,1])).reshape([-1])

test.iloc[:,0] = scaler1.transform(test.iloc[:,0].values.reshape([-1,1])).reshape([-1])
test.iloc[:,1] = scaler2.transform(test.iloc[:,1].values.reshape([-1,1])).reshape([-1])
test.iloc[:,2] = scaler3.transform(test.iloc[:,2].values.reshape([-1,1])).reshape([-1])
test.iloc[:,3] = scaler4.transform(test.iloc[:,3].values.reshape([-1,1])).reshape([-1])
'''   
def process(dataset,shuffle):
    #观看过去时间窗口 过去多少天
    past_history_size = 16
    #预测未来值n天
    future_target = 16 
    x = []
    y = []
    x1= []
    x2= []
    x3= []
    dataset=dataset.values
    for i in tqdm(range(len(dataset)-past_history_size-future_target+1)):
        x.append(dataset[i:i+past_history_size,:])
        x1.append(dataset[i+past_history_size:i+past_history_size+future_target,-1])
        x2.append(dataset[i+past_history_size:i+past_history_size+future_target,-2])
        x3.append(dataset[i+past_history_size:i+past_history_size+future_target,-3])
        y.append(dataset[i+past_history_size:i+past_history_size+future_target,0])
    x,x1,x2,x3 = np.array(x),np.array(x1),np.array(x2),np.array(x3)
    x = x.reshape([-1,past_history_size,num_nodes])
    x2=x2.reshape(-1,future_target,1)
    x1=x1.reshape([-1,future_target,1])
    x3=x3.reshape([-1,future_target,1])
    
    x = np.array(x).astype(float)
    x1 = np.array(x1).astype(float)
    x2 = np.array(x2).astype(float)
    x3 = np.array(x3).astype(float)
    y=np.array(y).astype(float)
    # 将x1, x2, x3拼接到x上
    x = torch.tensor(x, dtype=torch.float)
    x1 = torch.tensor(x1, dtype=torch.float)
    x2 = torch.tensor(x2, dtype=torch.float)
    x3 = torch.tensor(x3, dtype=torch.float)  # 转换x3为Tensor
    x = torch.cat((x, x1, x2, x3), dim=2)  # 在最后一个维度上拼接x1, x2, x3
    
    y=torch.tensor(y,dtype = torch.float)
    
    #print('y'*100)
    print(x.shape,y.shape)
    loader = Data.DataLoader(dataset=Data.TensorDataset(x, y),batch_size=batch_size,
                                               shuffle=shuffle, drop_last=False,num_workers=0)
    return loader

def process_test(dataset):
    #观看过去时间窗口 过去多少天
    past_history_size = 16
    #预测未来值n天
    future_target = 16 
    x = []
    y = []
    x1= []
    x2= []
    x3= []
    dataset=dataset.values
    for i in tqdm(range(len(dataset)-past_history_size-future_target+1)):
        x.append(dataset[i:i+past_history_size,:])
        x1.append(dataset[i+past_history_size:i+past_history_size+future_target,-1])
        x2.append(dataset[i+past_history_size:i+past_history_size+future_target,-2])
        x3.append(dataset[i+past_history_size:i+past_history_size+future_target,-3])
        y.append(dataset[i+past_history_size:i+past_history_size+future_target,0])
    x,x1,x2,x3 = np.array(x),np.array(x1),np.array(x2),np.array(x3)
    x = x.reshape([-1,past_history_size,num_nodes])
    x2=x2.reshape(-1,future_target,1)
    x1=x1.reshape([-1,future_target,1])
    x3=x3.reshape([-1,future_target,1])
    
    x = np.array(x).astype(float)
    x1 = np.array(x1).astype(float)
    x2 = np.array(x2).astype(float)
    x3 = np.array(x3).astype(float)
    y=np.array(y).astype(float)
    # 将x1, x2, x3拼接到x上
    x = torch.tensor(x, dtype=torch.float)
    x1 = torch.tensor(x1, dtype=torch.float)
    x2 = torch.tensor(x2, dtype=torch.float)
    x3 = torch.tensor(x3, dtype=torch.float)  # 转换x3为Tensor
    x = torch.cat((x, x1, x2, x3), dim=2)  # 在最后一个维度上拼接x1, x2, x3
    
    y=torch.tensor(y,dtype = torch.float)
    
    print(x.shape,y.shape)
    return x,y


Dtr = process(dataset=train,shuffle=True)
Val = process(dataset=val,shuffle=True)
testX,testY = process_test(dataset=test)
#Y_test  = torch.tensor(Y_test,dtype = torch.float)
#print(x_train.shape, y_train.shape,x_test.shape,y_test.shape)
return  Dtr, Val, testX,testY,result#, scaler1

class PositionalEncoding(nn.Module):
#def init(self, d_model, dropout=0.1, max_len=30):
def init(self, d_model, dropout=0.1, max_len=672):
super(PositionalEncoding, self).init()

    pe = torch.zeros(max_len, d_model)
    position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)

    div_term = torch.exp(
        torch.arange(0, d_model, 2).float() *
        (-math.log(10000.0) / d_model))

    pe[:, 0::2] = torch.sin(position * div_term)
    pe[:, 1::2] = torch.cos(position * div_term)

    pe = pe.unsqueeze(0).transpose(0, 1)

    self.register_buffer('pe', pe)

def forward(self, x):
    x = x + self.pe[:x.size(1), :].squeeze(1)
    return x

class TransformerModel(nn.Module):
def init(self, args):
super(TransformerModel, self).init()
self.args = args
# embed_dim = head_dim * num_heads?
self.input_fc = nn.Linear(args.input_size, args.d_model)
self.output_fc = nn.Linear(args.input_size, args.d_model)
self.pos_emb = PositionalEncoding(args.d_model)
encoder_layer = nn.TransformerEncoderLayer(
d_model=args.d_model,
nhead=4,
dim_feedforward=4 * args.input_size,
batch_first=True,
dropout=0.1,
device=device
)
decoder_layer = nn.TransformerDecoderLayer(
d_model=args.d_model,
nhead=4,
dropout=0.1,
dim_feedforward=4 * args.input_size,
batch_first=True,
device=device
)
self.encoder = torch.nn.TransformerEncoder(encoder_layer, num_layers=3)
self.decoder = torch.nn.TransformerDecoder(decoder_layer, num_layers=3)
self.fc = nn.Linear(args.output_size * args.d_model, args.output_size)
self.fc1 = nn.Linear(args.seq_len * args.d_model, args.d_model)
self.fc2 = nn.Linear(args.d_model, args.output_size)

def forward(self, x):
    # print(x.size())  # (256, 24, 7)
    y = x[:, -self.args.output_size:, :]
    #print(x.size())  # (256, 4, 7)
    x = self.input_fc(x)  # (256, 24, 128)
    x = self.pos_emb(x)   # (256, 24, 128)
    x = self.encoder(x)
    # 不经过解码器
    x = x.flatten(start_dim=1)
    x = self.fc1(x)
    out = self.fc2(x)
    # y = self.output_fc(y)   # (256, 4, 128)
    # out = self.decoder(y, x)  # (256, 4, 128)
    # out = out.flatten(start_dim=1)  # (256, 4 * 128)
    # out = self.fc(out)  # (256, 4)
    return torch.abs (out)

def get_val_loss(args, model, Val):
model.eval()
loss_function = nn.MSELoss().to(args.device)
val_loss = []
for (seq, label) in Val:
with torch.no_grad():
seq, label = seq.to(args.device), label.to(args.device)
label = label.to(args.device)
y_pred = model(seq)
loss = loss_function(y_pred, label)
val_loss.append(loss.item())

return np.mean(val_loss)

def print_history(train_loss_,val_loss_):
plt.plot(train_loss_,color=‘Orange’,label=“train loss”)
#print(“history.history[‘loss’]”,len(history.history[‘loss’]))
plt.plot(val_loss_,color=‘b’,label=“validation loss”)
plt.title(‘train_validation loss’)
plt.xlabel(‘epoch’)
plt.ylabel(‘loss’)
plt.legend()
#plt.show()
plt.savefig(path+r’/loss/transformer.png’)
plt.close()

def train(args, Dtr, Val):
model = TransformerModel(args).to(args.device)
loss_function = nn.MSELoss().to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
print(‘training…’)
epochs = args.epochs
min_epochs = 10
best_model = model#None
min_val_loss = 5
final_val_loss = []
train_loss_,val_loss_=[],[]
scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
for epoch in range(epochs):
train_loss = []
for batch_idx, (seq, target) in enumerate(Dtr, 0):
seq, target = seq.to(args.device), target.to(args.device)
#target=target.reshape(-1,1)
optimizer.zero_grad()
y_pred = model(seq)
#print(y_pred.shape)
#print(target.shape)
loss = loss_function(y_pred, target)
train_loss.append(loss.item())
loss.backward()
optimizer.step()
scheduler.step()
# validation
val_loss = get_val_loss(args, model, Val)

    if epoch + 1 >= min_epochs and val_loss < min_val_loss:
        min_val_loss = val_loss
        best_model = copy.deepcopy(model)

    print('epoch {:03d} train_loss {:.8f} val_loss {:.8f}'.format(epoch, np.mean(train_loss), val_loss))
    final_val_loss.append(val_loss)
    model.train()
    
    train_loss_.append(np.mean(train_loss))
    val_loss_.append(val_loss )

print_history(train_loss_,val_loss_)

#state = {'model': best_model.state_dict(), 'optimizer': optimizer.state_dict()}
#torch.save(state,PATH)
#torch.save(best_model,r'D:\我的坚果云\workworkwork\202308work\光伏功率超短期预测\model\transformer.pth')
#torch.save(best_model, path+r'\model\transformer.pth')
torch.save(best_model,path+r'/model/transformer.pth')
#torch.save(best_model, path+r'\model\transformer.pth')
return np.mean(final_val_loss)

@torch.no_grad()
def test(X_test1,ys,path,result,Cap):#,scaler1):# scaler,
print(‘loading models…’)
X_test1 = torch.tensor(X_test1,dtype = torch.float).to(device)
print(X_test1.shape)

model=torch.load(path+r'/model/transformer.pth').to(device)#, map_location=torch.device('cpu'))
#model.eval()
print('predicting...')
preds = model(X_test1)#,X_test2)
preds = preds.detach().cpu().numpy()
ys    = ys.numpy()
#print(ys.shape,preds.shape)
#y = scaler1.inverse_transform(ys)#.T
#pred = scaler1.inverse_transform(preds)#.T
y,pred=ys[:,-1],preds[:,-1]
for j in range(len(pred)):
    pred[j] = np.round(pred[j], 3)
    if pred[j] < 0:
        pred[j] = float(0)
    if pred[j]>Cap:
        pred[j]=Cap          
print(y.shape,pred.shape)
#print(type(y),type(pred))
print('mse:', get_mse(y, pred))
print('rmse:', get_rmse(y, pred))
print('mae:', get_mae(y, pred))
print('mape:', get_mape(y, pred))
print('r2score',get_r2(y,pred))
result['真实值']=y#[2192-2014:]
result['预测值']=pred#[2192-2014:]
plot_test(y, pred)
result.to_csv(path+r'/result/transformer.csv', sep=',')
mse=get_mse(y, pred)
rmse=get_rmse(y, pred)
mae=get_mae(y, pred)
mape= get_mape(y, pred)
r2score=get_r2(y,pred)
df = {"mse": mse, "rmse": rmse,"mae": mae, "mape": mape,"r2score":r2score}
df = pd.DataFrame(list(df.items()))
df.to_csv(path + '/result_score/transformer-result_score.csv')

@torch.no_grad()
def test16(X_test1,ys,path,result,Cap):#,scaler1):# scaler,

print('loading models...')
X_test1 = torch.tensor(X_test1,dtype = torch.float).to(device)
print(X_test1.shape)

model=torch.load(path+r'/model/transformer.pth').to(device)#, map_location=torch.device('cpu'))
#model.eval()
print('predicting...')
preds = model(X_test1)#,X_test2)
preds = preds.detach().cpu().numpy()
ys    = ys.numpy()
#print(ys.shape,preds.shape)
#y = scaler1.inverse_transform(ys)#.T
#pred = scaler1.inverse_transform(preds)#.T
y,pred=ys[:,-1],preds[:,-1]
print(y.shape,pred.shape)
#print(type(y),type(pred))
print('mse:', get_mse(y, pred))
print('rmse:', get_rmse(y, pred))
print('mae:', get_mae(y, pred))
print('mape:', get_mape(y, pred))
print('r2score',get_r2(y,pred))
result['真实值']=y#[2192-2014:]
result['预测值']=pred#[2192-2014:]
plot_test(y, pred)

def correction(jj):
    for j in range(len(preds[:,jj])):
        preds[:,jj][j] = np.round(preds[:,jj][j], 3)
        if preds[:,jj][j] < 0:
            preds[:,jj][j] = float(0)
        if preds[:,jj][j]>Cap:
            preds[:,jj][j]=Cap

for j in range(16):
    correction(j)
   
result['真实值']=y
for i in range(16):
    result['预测值'+str(i)]=preds[:,i]

result.to_csv(path+r'/result/transformer16个点.csv', sep=',')
mse=get_mse(y, pred)
rmse=get_rmse(y, pred)
mae=get_mae(y, pred)
mape= get_mape(y, pred)
r2score=get_r2(y,pred)
df = {"mse": mse, "rmse": rmse,"mae": mae, "mape": mape,"r2score":r2score}
df = pd.DataFrame(list(df.items()))
df.to_csv(path + '/result_score/transformer取16个点最后一个-result_score.csv')

def plot_test(y, pred):
# plot
plt.plot(y, color=‘blue’, label=‘true value’)
plt.plot(pred, color=‘red’, label=‘pred value’)
plt.title(‘transformer的预测结果’)
#plt.grid(True)
plt.legend(loc=‘upper center’, ncol=6)
#plt.show()
plt.savefig(path+r’/pictures/transformer.png’)

def get_mape(y_true, y_pred):
“”"
计算平均绝对百分比误差 (Mean Absolute Percentage Error)
“”"
# 防止除以零和负数开根号的情况
y_true = np.where(y_true == 0, 1e-6, y_true) # 对于0值,用一个极小正数替代以避免除法错误
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

def get_r2(y_true, y_pred):
“”"
计算决定系数 R²
“”"
rss = np.sum((y_true - y_pred) ** 2) # 剩余平方和
tss = np.sum((y_true - np.mean(y_true)) ** 2) # 总平方和
return 1 - (rss / tss)

def get_mae(y_true, y_pred):
“”"
计算平均绝对误差 (Mean Absolute Error)
“”"
return np.mean(np.abs(y_true - y_pred))

def get_mse(y_true, y_pred):
“”"
计算均方误差 (Mean Squared Error)
“”"
return np.mean((y_true - y_pred) ** 2)

def get_rmse(y, pred):
return np.sqrt(get_mse(y, pred))

def get_best_parameters(args, Dtr, Val):
def objective(trial):
model = TransformerModel(args).to(args.device)
loss_function = nn.MSELoss().to(args.device)
optimizer = trial.suggest_categorical(‘optimizer’,
[torch.optim.SGD,
torch.optim.RMSprop,
torch.optim.Adam])(
model.parameters(), lr=trial.suggest_loguniform(‘lr’, 5e-4, 1e-2))
print(‘training…’)
epochs = 10
val_loss = 0
for epoch in range(epochs):
train_loss = []
for batch_idx, (seq, target) in enumerate(Dtr, 0):
seq, target = seq.to(args.device), target.to(args.device)
optimizer.zero_grad()
y_pred = model(seq)
loss = loss_function(y_pred, target)
train_loss.append(loss.item())
loss.backward()
optimizer.step()
# validation
val_loss = get_val_loss(args, model, Val)

        print('epoch {:03d} train_loss {:.8f} val_loss {:.8f}'.format(epoch, np.mean(train_loss), val_loss))
        model.train()

    return val_loss

sampler = optuna.samplers.TPESampler()
study = optuna.create_study(sampler=sampler, direction='minimize')
study.optimize(func=objective, n_trials=5)
pruned_trials = study.get_trials(deepcopy=False,
                                 states=tuple([optuna.trial.TrialState.PRUNED]))
complete_trials = study.get_trials(deepcopy=False,
                                   states=tuple([optuna.trial.TrialState.COMPLETE]))
best_trial = study.best_trial
print('val_loss = ', best_trial.value)
for key, value in best_trial.params.items():
    print("{}: {}".format(key, value))

def main():
Cap=300
args = args_parser()
Dtr, Val, testX,testY,result= nn_seq(args)
# get_best_parameters(args, Dtr, Val)
import time
T1 = time.time()
train(args, Dtr, Val)#, PATH
print(‘train用时’,time.time()-T1)
T2=time.time()
test( testX,testY,path,result,Cap)
test16( testX,testY,path,result,Cap)#, scaler1)
print(‘test用时’,time.time()-T2)

if name == ‘main’:
main()

tensorflow是一个强大的机器学习库,它提供了许多灵活且高效的工具,用于实现多变量预测任务。其中,transformer模型作为一种先进的神经网络架构,在多变量预测中也取得了很好的效果。 使用tensorflow实现transformer变量预测的过程通常分为以下几个步骤。首先,我们需要准备数据集,包括历史多变量数据以及对应的目标变量。接着,我们可以利用tensorflow的数据处理工具,对数据进行预处理和特征工程,例如归一化、标准化等操作。然后,我们可以构建transformer模型,利用tensorflow提供的神经网络接口,定义模型架构、损失函数和优化器等。在模型训练阶段,我们可以利用tensorflow的自动微分功能,快速高效地进行梯度下降优化,以最小化损失函数。最后,我们可以利用训练好的transformer模型,对新的多变量数据进行预测。 在这个过程中,tensorflow提供了丰富的工具和接口,帮助我们快速实现transformer变量预测的任务。通过合理的数据处理和特征工程以及合适的模型设计和训练,我们可以利用tensorflow构建高效准确的多变量预测模型,为实际应用提供有力支持。同时,tensorflow也提供了丰富的文档和社区支持,使得我们能够在实践中不断改进和优化模型的性能。总的来说,tensorflow在transformer变量预测任务中是一个强大而灵活的工具,能够帮助我们快速实现高效的预测模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值