MIT线性代数笔记01-方程组的行图与列图

Lecture01 方程组的行图与列图

Gilbert Strang

课程编号1806
在这里插入图片描述
相关课程资源见文末

导入:求解线性方程组

考虑方程组:

{ 2 x − y = 0 − x + 2 y = 3 ( 1 ) \left \{ \begin{matrix}2x-y=0 \\ -x+2y=3 \end{matrix}\right .\qquad\qquad(1) {2xy=0x+2y=3(1)

【行图像】:两条直线的交点即为方程组的解
Alt
\qquad 容易求得,方程组的解为 ( 1 , 2 ) (1,2) (1,2)
【列图像】
\qquad 在这里,用列图像的视角考察方程的解将更重要。

\qquad 将方程组看成 ( 2 − 1 ) x + ( − 1 2 ) y = ( 0 3 ) ( 2 ) \left ( \begin{matrix}2 \\ -1 \end{matrix} \right )x+\left ( \begin{matrix}-1 \\ 2 \end{matrix} \right )y=\left ( \begin{matrix}0 \\ 3 \end{matrix} \right )\qquad\qquad(2) (21)x+(12)y=(03)(2)


\qquad v 1 = ( 2 − 1 ) , v 2 = ( − 1 2 ) , b = ( 0 3 ) \bold{v_1}=\left ( \begin{matrix}2 \\ -1 \end{matrix} \right ) ,\bold{v_2}=\left ( \begin{matrix}-1 \\ 2 \end{matrix} \right ), \bold{b}=\left ( \begin{matrix}0 \\ 3 \end{matrix} \right ) v1=(21),v2=(12),b=(03),(向量用粗体表示)

在这里插入图片描述
\qquad 方程组成立的条件即以 v 1 \bold{v_1} v1 v 2 \bold{v_2} v2为基向量,寻找合适的系数将其线性组合成 b \bold{b} b,方程组的解即为两个基向量的系数。将解 ( 1 , 2 ) (1,2) (1,2)代入方程 ( 1 ) (1) (1)中能够很好的验证。
线性组合是贯穿课程始终的基本方法。
( 2 − 1 ) ∗ 1 + ( − 1 2 ) ∗ 2 = ( 0 3 ) \left ( \begin{matrix}2 \\ -1 \end{matrix} \right )*1+\left ( \begin{matrix}-1 \\ 2 \end{matrix} \right )*2=\left ( \begin{matrix}0 \\ 3 \end{matrix} \right ) (21)1+(12)2=(03)

\qquad 更进一步,方程组 ( 1 ) (1) (1)可以写成如下形式:
( 2 − 1 − 1 2 ) ( x y ) = ( 0 3 ) ( 3 ) \left ( \begin{matrix}2&-1 \\ -1 &2 \end{matrix} \right )\left ( \begin{matrix}x \\ y \end{matrix} \right )=\left ( \begin{matrix}0 \\ 3 \end{matrix} \right )\qquad\qquad(3) (2112)(xy)=(03)(3)
\qquad 或者: A x = b \bold{Ax}=\bold{b} Ax=b.其中 A = ( 2 − 1 − 1 2 ) \bold{A}=\left ( \begin{matrix}2&-1 \\ -1 &2 \end{matrix} \right ) A=(2112), x = ( x y ) \bold{x}=\left ( \begin{matrix}x \\ y \end{matrix} \right ) x=(xy)
\qquad 容易想到,这里如果x,y取任意值的话, v 1 \bold{v_1} v1 v 2 \bold{v_2} v2的所有线性组合将布满整个坐标平面。但是如果 v 1 \bold{v_1} v1 v 2 \bold{v_2} v2共线,则不是任意的 b \bold{b} b都可以用 v 1 \bold{v_1} v1 v 2 \bold{v_2} v2线性表示。即此时方程不一定有解。
\qquad 同理,三维及更高维的情况也可以从这两个视角进行理解:

{ 2 x − y = 0 − x + 2 y − z = − 1 − 3 y + 4 z = 4 ( 4 ) \left \{ \begin{matrix}2x-y=0 \\ -x+2y-z=-1 \\-3y+4z=4 \end{matrix}\right .\qquad\qquad(4) 2xy=0x+2yz=13y+4z=4(4)
方程组也可以写为: A x = b \bold{Ax}=\bold{b} Ax=b,其中 A = ( 2 − 1 0 − 1 2 − 1 0 − 3 4 ) \bold{A}=\left ( \begin{matrix}2&-1&0 \\ -1 &2&-1\\0&-3&4 \end{matrix} \right ) A=210123014, x = ( x y z ) \bold{x}=\left ( \begin{matrix}x \\ y \\z\end{matrix} \right ) x=xyz, b = ( 0 − 1 4 ) \bold{b}=\left ( \begin{matrix}0 \\ -1 \\4 \end{matrix} \right ) b=014

行图像列图像
在这里插入图片描述在这里插入图片描述
其中三个平面的交点即为方程组的解使得 v 1 、 v 2 、 v 3 \bold{v_1}、\bold{v_2}、\bold{v_3} v1v2v3能线性组合成 b \bold{b} b的系数组合就是方程的解

\qquad 在这个特例中,从列视角 ( 2 − 1 0 ) x + ( − 1 2 − 3 ) y + ( 0 − 1 4 ) z = ( 0 − 1 4 ) \left ( \begin{matrix}2 \\ -1\\0 \end{matrix} \right )x+\left ( \begin{matrix}-1 \\ 2 \\-3\end{matrix} \right )y+\left ( \begin{matrix}0 \\ -1\\4 \end{matrix} \right )z=\left ( \begin{matrix}0 \\ -1\\4 \end{matrix} \right ) 210x+123y+014z=014,容易看出方程的解为 ( 0 , 0 , 1 ) (0,0,1) (0,0,1).
\qquad 若保持等号左侧向量不变,变化等号右侧的向量,在此题中,等号右侧换成任意向量,方程 A x = b \bold{Ax}=\bold{b} Ax=b总有解,即列向量的线性组合能覆盖整个三维空间。但有时候,等号左侧的基向量不一定能构造出等号右侧的向量,比如左边三个向量共面时,方程组不一定有解。对于更高维的情况,也可以如此类比理解。

矩阵乘法

\qquad 对于矩阵乘法,可以从线性组合( A x \bold{Ax} Ax is a combination of columns of A \bold{A} A)和点积两个角度进行理解和计算。

1.线性组合角度

【右乘】:对于矩阵右乘一个向量,可以看成左边矩阵列向量的线性组合,如
( 2 5 1 3 ) ( 1 2 ) = 1 ( 2 1 ) + 2 ( 5 3 ) = ( 12 7 ) \left ( \begin{matrix}2 &5\\ 1&3 \end{matrix} \right )\left ( \begin{matrix}1 \\ 2 \end{matrix} \right )=1\left ( \begin{matrix}2 \\ 1 \end{matrix} \right )+2\left ( \begin{matrix}5 \\ 3 \end{matrix} \right )=\left ( \begin{matrix}12 \\ 7 \end{matrix} \right ) (2153)(12)=1(21)+2(53)=(127)
\qquad 对于矩阵右乘一个矩阵,可以看成左边矩阵分别和右边矩阵的两个列向量相乘,再排到一起。
( 2 5 1 3 ) ( 1 3 2 1 ) = ( ( 2 5 1 3 ) ( 1 2 ) ( 2 5 1 3 ) ( 3 1 ) ) = ( 12 11 7 6 ) \left ( \begin{matrix}2 &5\\ 1&3 \end{matrix} \right )\left ( \begin{matrix}1&3 \\ 2&1 \end{matrix} \right )= \left ( \begin{matrix} \left ( \begin{matrix}2 &5\\ 1&3 \end{matrix} \right ) \left ( \begin{matrix}1 \\ 2 \end{matrix} \right ) \quad \left ( \begin{matrix}2 &5\\ 1&3 \end{matrix} \right ) \left ( \begin{matrix}3 \\ 1 \end{matrix} \right ) \end{matrix} \right )=\left ( \begin{matrix}12 &11\\ 7&6 \end{matrix} \right ) (2153)(1231)=((2153)(12)(2153)(31))=(127116)

【左乘】:对于矩阵左乘一个向量,可以看成右边矩阵行向量的线性组合,如:
( 2 5 ) ( 1 3 2 1 ) = 2 ( 1 3 ) + 5 ( 2 1 ) = ( 12 11 ) \left ( \begin{matrix}2 &5 \end{matrix} \right )\left ( \begin{matrix}1&3 \\ 2&1 \end{matrix} \right )= 2(1 \quad 3)+5(2 \quad 1)=(12 \quad 11) (25)(1231)=2(13)+5(21)=(1211)
\qquad 对于矩阵左乘一个矩阵,可以看成右边矩阵分别与左边矩阵的行向量相乘,然后再排到一起
( 2 5 1 3 ) ( 1 3 2 1 ) = ( ( 2 5 ) ( 1 3 2 1 ) ( 1 3 ) ( 1 3 2 1 ) ) = ( 12 11 7 6 ) \left ( \begin{matrix}2 &5\\ 1&3 \end{matrix} \right )\left ( \begin{matrix}1&3 \\ 2&1 \end{matrix} \right )= \left ( \begin{matrix} \left ( \begin{matrix}2 &5 \end{matrix} \right )\left ( \begin{matrix}1&3 \\ 2&1 \end{matrix} \right )\\ \\ \left ( \begin{matrix}1 &3 \end{matrix} \right )\left ( \begin{matrix}1&3 \\ 2&1 \end{matrix} \right ) \end{matrix} \right )=\left ( \begin{matrix}12 &11\\ 7&6 \end{matrix} \right ) (2153)(1231)=(25)(1231)(13)(1231)=(127116)

2.点积角度

( 2 5 1 3 ) ( 1 3 2 1 ) = ( ( 2 5 ) ⋅ ( 1 2 ) ( 2 5 ) ⋅ ( 3 1 ) ( 1 3 ) ⋅ ( 1 2 ) ( 1 3 ) ⋅ ( 3 1 ) ) = ( 12 11 7 6 ) \left ( \begin{matrix}2 &5\\ 1&3 \end{matrix} \right )\left ( \begin{matrix}1&3 \\ 2&1 \end{matrix} \right )= \left ( \begin{matrix} \left ( \begin{matrix}2 &5 \end{matrix} \right )\cdot\left ( \begin{matrix}1 \\ 2 \end{matrix} \right )\quad \left ( \begin{matrix}2 &5 \end{matrix} \right )\cdot\left ( \begin{matrix} 3\\ 1 \end{matrix} \right ) \\ \\ \left ( \begin{matrix}1 &3 \end{matrix} \right )\cdot\left ( \begin{matrix}1\\ 2 \end{matrix} \right )\quad \left ( \begin{matrix}1 &3 \end{matrix} \right )\cdot\left ( \begin{matrix}3\\ 1 \end{matrix} \right ) \end{matrix} \right )=\left ( \begin{matrix}12 &11\\ 7&6 \end{matrix} \right ) (2153)(1231)=(25)(12)(25)(31)(13)(12)(13)(31)=(127116)

后记

\qquad 对于线性代数,一上来就直接给出矩阵表示,并从行图,列图角度进行介绍,看似有点太直接,但听下来感觉还是很好接受。比起从行列式开始,感觉从列向量、线性组合的角度开始学习要更容易理解一些。这门课弱化了部分公式的推导证明,但课程设计和逻辑性非常好,有层次,有重点,也比较好理解。

===================================================

课程资源

  • 主课:bilibli、网易公开课都可以搜到,关键字(麻省理工,线性代数)
  • 配套习题课:bilibli可以搜到,关键字(麻省理工,线性代数,陈莉楠)
  • 教材:Gilbert Strang.Introduction to Linear Algebra
  • 课程官网:http://web.mit.edu/18.06
    \qquad\qquad https://mitmath.github.io/1806/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值