YOLOv5环境配置

部署运行你感兴趣的模型镜像

本文内容参考如下博客:

深度学习目标检测:yolov5环境配置,适合0基础小白,超详细-CSDN博客文章浏览阅读2.8w次,点赞178次,收藏658次。本文详细指导了如何在Windows系统上检查电脑配置,安装Anaconda3和Pycharm,创建并配置虚拟环境以安装PyTorch(包括GPU和CPU版本),以及配置和验证yolov5环境的过程,适合深度学习初学者和开发者参考。 https://blog.csdn.net/qq_67105081/article/details/138232424具体步骤如下(供自己记录学习用)。

目录

 

1.查看电脑状况,“任务管理器-性能-GPU”,看是否有独立显卡

2.安装Anaconda3+Pycharm

3.创建虚拟环境,安装pytorch

3.1创建虚拟环境

3.2安装cuda,pytorch

3.2.1安装cuda

3.2.2 安装pytorch(GPU版)

4.配置yolov5环境

4.1下载YOLO源码

4.2安装yolov5所需库

4.3 Pycharm打开yolov5

5.验证环境

1.查看电脑状况,“任务管理器-性能-GPU”,看是否有独立显卡

2.安装Anaconda3+Pycharm

我之前安装好了,所以此步骤跳过了。

3.创建虚拟环境,安装pytorch

3.1创建虚拟环境

打开anaconda prompt

默认进入的是base环境,此时需要新建环境,在新建环境之前建议更改默认的pip源和conda源。

更改代码如下,直接输入即可,这里选择更换的是中科大源。

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple

此时新建虚拟环境(需要关闭加速软件),这里创建一个名为yolov5,python版本为3.9的虚拟环境

conda create -n yolov5 python=3.9

显示如下则正常创建,输入y 并回车:

创建完之后输入:

conda activate yolov5

此时已进入了yolov5环境中:

3.2安装cuda,pytorch

3.2.1安装cuda

在安装pytorch前需要安装cuda,(若无显卡则跳过)下载cuda前需要先查看显卡支持的CUDA版本最高是多少,按下win+r键,输入cmd,在打开的页面输入:nvidia-smi ,即可查看

上图红框位置显示即为cuda最高支持版本,本教程最高版本达到11.8即可,若没有达到则需要更新显卡驱动。

CUDA Toolkit Archive | NVIDIA Developerhttps://developer.nvidia.com/cuda-toolkit-archive

在这个网站挑选下载或者使用夸克网盘下载或者点击下载

下载好后运行安装,建议安装在C盘:

该界面选自定义,全部打钩,点击下一步:

安装完成后在cmd里输入nvcc -V,显示如下即代表安装成功:

(1)进入cudnn官网,选择合适版本的文件:

cuDNN Archive | NVIDIA Developer

(2)或直接点击这个链接下载下载cudnn(我用的这个)

解压后显示如下:

将得到的压缩文件进行解压,解压后得到下图三个文件夹,全选复制进cuda的文件夹中进行覆盖替换,替换完成后即cudnn安装完成。按照本文教程安装的cuda的文件夹默认在 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8 目录下。

3.2.2 安装pytorch(GPU版)

打开prompt 输入conda activate yolov5进入yolov5环境,之后输入如下代码即可安装pytorch,耐心等待安装完成(需要注意关闭加速软件否则会下载失败)

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118

安装成功页面如下图所示:

完成后,再输入下面的指令通过pip安装其余库:

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118

安装完成页面如下图所示:

4.配置yolov5环境

4.1下载YOLO源码

(1)github官网地址(代码一直在更新):

https://github.com/ultralytics/yolov5/

(2)点击网盘下载(压缩包内附带yolov5n.pt和yolov5s.pt)。

下载完成后解压

4.2安装yolov5所需库

需要通过anaconda prompt 进入yolov5环境中,按照下图cd到yolov5根目录下,我的是E:\yolov5test20250808\yolov5-7.0\yolov5-7.0。之后输入指令“pip install -r requirements.txt”。

指令代码:

pip install -r requirements.txt

点击回车,耐心等待安装完毕。(我的warning是因为 Python 的distutils配置文件(setyp.cfg)的编码问题有关,不影响环境的正常安装和使用)界面如下:

至此yolov5环境全部安装完成。撒花!

4.3 Pycharm打开yolov5

点击鼠标右键yolov5文件夹通过pycharm打开,打开后需要配置虚拟环境:

英文版:点击file-settings,点击project:ultralytics,点击python interpreter,点击右边add....。

我是中文版,界面和步骤如下:

(小tip:上述这步找不到这个路径时,可以打开 Anaconda Prompt,输入命令“conda env list”。输出中,左侧是环境名称,右侧对应的路径就是该虚拟环境的安装位置。)

设置好后界面如下:

5.验证环境

此时可以去网上下载一只猫猫的jpg图片,将其放到data/images目录下。检测环境是否有问题可以运行detect.py。显示如下界面说明运行成功,环境配置正常。

顺着路径可以看到如下运行结果:

以上就是yolov5的环境配置及成功运行,下一篇将讲述如何训练自己的数据集并修改权重参数。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

配置 YOLOv5 的运行或开发环境可以根据不同的操作系统和硬件平台采用多种方式来完成。以下是几种常见的方法: ### 基于 Windows 配置 YOLOv5 开发环境 1. **创建 Python 虚拟环境** 使用 Anaconda 创建独立的虚拟环境是一个推荐的做法,这样可以避免不同项目之间的依赖冲突。打开 Anaconda Prompt 并执行以下命令: ```bash conda create -n yolov5 python=3.8 conda activate yolov5 ``` 2. **安装 PyTorch 和其他必要的库** 根据您的 GPU 支持情况选择合适的 CUDA 版本进行安装。对于支持 NVIDIA 显卡的用户来说,可以选择带有 `cudatoolkit` 的版本: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.0 ``` 如果网络速度较慢,则可以通过切换到国内镜像加速下载过程。 3. **克隆官方仓库并准备数据集** 接下来需要从 GitHub 上获取最新的 YOLOv5 代码,并准备好用于训练或者测试的数据集文件夹结构。 4. **验证安装是否成功** 可以通过运行一些预定义脚本来确认一切设置无误,比如尝试加载模型并对图像进行推理操作。 ### 利用 Docker 构建跨平台解决方案 如果您希望快速部署而不必担心底层系统的差异性问题,那么使用 Docker 是一种非常有效的方式[^2]。只需一条简单的命令即可启动一个包含所有必需组件的工作空间: ```bash docker run -it --name yolov5 --gpus all -v /path/to/local/directory:/yolov5 ultralytics/yolov5:latest bash ``` 这条指令不仅会拉取最新版的基础映像,还将挂载本地目录以便后续处理自己的数据集或其他资源。 ### 对 Jetson Nano 用户的一些建议 针对特定嵌入式设备如 NVIDIA Jetson Nano,在构建适用于该类低功耗高性能计算模块的应用程序时需要注意其独特的软硬兼容需求。虽然理论上讲大多数标准流程都适用,但在实际应用过程中可能还需要额外调整某些参数以达到最佳性能表现[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值