题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某一个数加上x
2.求出某区间每一个数的和
输入格式
第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3个整数,表示一个操作,具体如下:
操作1: 格式:1 x k 含义:将第x个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出格式
输出包含若干行整数,即为所有操作2的结果。
输入输出样例
输入 #1 复制
5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4
输出 #1 复制
14
16
===================================================================怎么说呢,刚看了看别人对树状数组的理解,大概明白了,知道了有这样一个东西,知道过程,模板时怎么写的了,先就这样吧,怎么说呢,很神奇吧。
大佬1
帮助理解
#include<iostream>
#include<cstdio>
#include<cmath>
const int N = 2e6+5;
using namespace std;
int n,m,tree[N],aa[N];
int lowbit(int k){
return k & -k;
}
void add(int x,int k){
while(x<=n){
tree[x]+=k;
x+=lowbit(x);
}
}
int sum(int x){
int ans=0;
while(x > 0){
ans+=tree[x];
x-=lowbit(x);
}
return ans;
}
int main(){
cin>>n>>m;
int a,b,c;
for(int i=1;i<=n;i++){
scanf("%d",aa+i);
}
for(int i=1;i<=n;i++) add(i,aa[i]);
for(int i=1;i<=m;i++){
scanf("%d %d %d",&a,&b,&c);
if(a == 1){
add(b,c);
}
else if(a == 2){
printf("%d\n",sum(c) -sum(b-1));
}
}
return 0;
}