机器学习之监督学习:回归

本文深入探讨了机器学习中的监督学习方法——回归。通过实例分析了线性回归在房价预测中的应用,详细介绍了如何进行线性拟合和多项式回归,以处理非线性关系。同时,引入岭回归作为改进的线性模型,用于交通流量预测,以提高预测准确性。
摘要由CSDN通过智能技术生成

线性回归

:用来确定两种或两种以上变量间的相互依赖的定量关系

房价与房屋尺寸的线性拟合

:对房屋成交信息建立回归方程,并依据回归方程对房屋价格进行预测

数据格式一览

在这里插入图片描述

源代码

import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression
 
 
//读取数据集
datasets_X = []
datasets_Y = []
fr = open('prices.txt','r')
lines = fr.readlines()
for line in lines:
    items = line.strip().split(',')
    //存储房屋尺寸
    datasets_X.append(int(items[0]))
    //存储房屋价格
    datasets_Y.append(int(items[1]))
 
length = len(datasets_X)
//将其变为二维数组,以符合线性回归拟合函数输入参数的要求
datasets_X = np.array(datasets_X).reshape(length,1)
//将其变为等长数组
datasets_Y = np.array(datasets_Y)
 
minX = min(datasets_X)
maxX = max(datasets_X)
//建立等差数列,方便后续画图
X = np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值