画出使用回溯法解0/1背包问题的解空间树

画出使用回溯法解0/1背包问题的解空间树

问题描述:
使用回溯法解0/1背包问题:n=3,W=9, W={2,4,5}, V={6,10,7},其解向量x由长度为3的0-1向量组成,并画出其解空间树(从根出发,左1右0),计算其最优值及最优解。

问题解析:
再这个问题中每个物品要么装入,要么不装入,其解空间是一棵子集树,树中每一个结点表示背包的一种选择状态,记录当前放入背包的总重量和总价值,每个分枝结点下面由两条边表示对某物品是否放入背包的两种可能的选择。
正确答案:
在这里插入图片描述

回溯法0_1背包问题时,会用到状态空间树。在搜索状态空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。当右子树有可能包含最优时才进入右子树搜索,否则将右子树剪去。设r是当前剩余物品价值总和;cp是当前价值;bestp是当前最优价值。当cp+r≤bestp时,可剪去右子树。计算右子树中的上界可以用的方法是将剩余物品依其单位重量价值排序,然后依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。由此得到的价值是右子树中的上界,用此值来剪枝。 为了便于计算上界,可先将物品依其单位重量价值从大到小排序,此后只要顺序考察各物品即可。在实现时,由MaxBoundary函数计算当前结点处的上界。它是类Knap的私有成员。Knap的其他成员记录了解空间树种的节点信息,以减少函数参数的传递以及递归调用时所需要的栈空间。在解空间树的当前扩展结点处,仅当要进入右子树时才计算上界函数MaxBoundary,以判断是否可以将右子树减去。进入左子树时不需要计算上界,因为其上界父结点的上界相同。 在调用函数Knapsack之前,需要先将各物品依其单位重量价值从达到小排序。为此目的,我们定义了类Objiect。其中,运算符通常的定义相反,其目的是为了方便调用已有的排序算法。在通常情况下,排序算法将待排序元素从小到大排序。 在搜索状态空间树时,由函数Backtrack控制。在函数中是利用递归调用的方法实现了空间树的搜索
### 回答1: 好的,我来一下。 首先,0-1背包问题回溯法解空间树是一棵二叉树,每个节点表示装或者不装当前物品的决策。 当n=3时,我们有3个物品可以选择装或不装,所以初始状态是一棵只有根节点的树。 ![image-20210819152219082](https://gitee.com/AmosWong/cdn/raw/master/image-20210819152219082.png) 接下来,我们选择装或不装第一个物品,得到两个子节点。 ![image-20210819152542356](https://gitee.com/AmosWong/cdn/raw/master/image-20210819152542356.png) 然后,在每个子节点的基础上,再选择装或不装第二个物品,继续扩展树。 ![image-20210819152843622](https://gitee.com/AmosWong/cdn/raw/master/image-20210819152843622.png) 最后,我们在第三层节点上选择装或不装第三个物品,得到所有的叶子节点。 ![image-20210819153224490](https://gitee.com/AmosWong/cdn/raw/master/image-20210819153224490.png) 每个叶子节点表示一种可能的装包方案,我们需要遍历整棵树,计算每个叶子节点对应的总价值,最后输总价值最大的方案即可。 ### 回答2: 0-1背包问题是一个经典的组合优化问题,假设有一个背包,可以容纳一定的重量,现有n个物品,每个物品的重量和价值不同,要求选择一些物品放入背包中,使得背包中的物品总重量不超过背包的容量,且所选物品的总价值最大。 当n=3时,可以将0-1背包问题回溯法解空间树如下: (0,0,0) / | \ (0,0,1) (0,1,0) (0,1,1) / \ / \ (0,1,1) (1,1,0) (1,1,1) (0,2,0) / \ / \ (1,1,0) (1,2,0) (1,2,1) (0,3,0) / \ / \ (1,2,0) (1,3,0) (1,3,1) (0,4,0) 在上述的回溯法解空间树中,每个节点的表示为(已选择的物品总重量,当前处理的物品索引,背包是否被放满)。从根节点开始,根据问题的空间特点,依次选择放入物品或不放入物品。若放入物品使得背包未满且价值最大,则继续向下扩展节点;若不放入物品或放入物品后背包已满,则进入右节点。最终得到所有可能的,其中最优即为找到价值最大的节点。 在绘制该解空间树时,可以通过设定一个约束条件,如背包中的物品总重量不超过背包容量,来限制树的扩展方向,以便排除不满足约束条件的节点。通过回溯法搜索解空间树,可以找到所有满足约束条件的,并从中选择最优。 注意:上述解空间树只是一个示意图,并没有考虑具体的背包容量、物品重量和价值。在实际应用中,可以根据具体问题进行调整。 ### 回答3: 0-1背包问题是一个经典的组合优化问题,回溯法是一种常用的决该问题的方法之一。当$n=3$时,我们可以通过回溯法解空间树决该问题。 回溯法解空间树是一棵二叉树,树的每个节点代表了问题的一个的状态。根节点表示问题的初始状态,首先将背包容量设满,然后依次考虑每一个物品是否放入背包。 首先,根节点,背包容量全满: ``` 3/6 / \ / \ 2/4 2/6 ``` 接下来,我们考虑是否将物品1放入背包。如果放入物品1,背包容量将减少物品1的重量,变为3。否则,背包容量不变,仍为6。因此,在根节点的两个子节点上分别标记上物品1以及不放物品1后的背包容量。 接下来,再考虑是否将物品2放入背包。如果放入物品2,背包容量将进一步减少,否则背包容量不变。这样,我们就能得到更多的子节点: ``` 3/6 / \ 2/4 2/6 / \ / \ 1/2 1/4 1/6 0/6 ``` 最后,我们考虑是否将物品3放入背包。同样,如果放入物品3会导致背包容量减少,不放入则容量不变。以此得到更多的子节点: ``` 3/6 / \ 2/4 2/6 / \ / \ 1/2 1/4 1/6 0/6 / \ / \ / \ / \ 1/0 1/4 1/2 1/4 0/6 0/6 0/6 ``` 最终,我们得到一个完整的回溯法解空间树。树的每一个叶子节点都代表了问题的一个,通过遍历整个树,我们可以找到所有的,并找到最优。 以上就是当$n=3$时的0-1背包问题回溯法解空间树。通过这个树结构,我们可以清晰地展示回溯法0-1背包问题时的搜索路径和状态变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值