- 博客(12)
- 收藏
- 关注
原创 Causal Representation Learning for Out-of-Distribution Recommendation
推荐系统从历史交互数据中学习用户偏好表示,然而用户偏好转移是常见的,这是一种OOD问题目前解决问题的方法分为三类现有的方法通过E1和D来学习偏好表示,所以会出现OOD问题,OOD推荐是对干预后相互作用概率的推断:P(D|do(E1 = e ′1), E2)用户偏好变化对E1有影响,进而影响Z1,可以使用不变偏好Z2迅速适应变化。
2023-04-26 16:45:49 379 4
原创 SimRec-Graph-less Collaborative Filtering
GNN在协同过滤的推荐领域大展拳脚,如NGCF, LightGCN , GCCF,在图结构的用户-项目交互数据上表示学习的能力超强。但是基于GNN的协同过滤方法容易受到过度平滑和噪音问题的干扰,同时,也存在可扩展性问题。本文提出了一个简单的协同过滤模型(SimRec),借用了知识蒸馏和对比学习的思想。SimRec模型的表现如下图所示,它在保证模型效果的同时降低了推理时间图c展示了SimRec模型和其他模型学习的embedding分布,有更好的均匀性uniformity。
2023-04-26 11:45:19 284 3
原创 WSDM2023:Unbiased Knowledge Distillation for Recommendation
具有众多参数的大模型容量大,因此具有更好的精度。然而,它的成功需要大量的计算和内存成本,这将在推理阶段导致不可接受的延迟知识蒸馏(knowledge distillation, KD)已被应用于推荐系统中,其目的是在保持模型性能的同时减小模型尺寸,使其难以应用于实际的推荐当中。KD首先从训练集中训练一个大的teacher模型,然后在teacher生成的soft labels的监督下学习一个小的student模型。
2023-04-19 14:35:37 329 1
原创 Disentangled Representation for Diversified Recommendations
将推荐系统学习到的用户表示(user representation)解耦为类别无关(category-independent)的和类别(category-dependent)有关的部分(如质量),来得到用户的喜好。推荐多样性(diversity)它衡量推荐项目对某些项目属性(例如项目类别)之间的差异也对整体用户体验起着重要作用。要达到©,这要求推荐模型清楚地区分用户的正/负反馈是由于项目的类别或其他与类别无关的项目特征(例如,项目自己的质量),这被以前的推荐模型忽略。
2023-04-13 22:07:14 453 2
原创 WWW21:Disentangling User Interest and Conformity for Recommendation with Causal Embedding
DICE 模型利用因果推断技术,将混杂了兴趣与从众性的传统 embedding 解耦。解耦后的 embedding 各自使用特定样本训练,实现了用户兴趣与从众性的巧妙剥离,达到同时利用流行度偏差与用户兴趣以提升推荐指标的目的。
2023-04-04 14:17:38 270
原创 Disentangled Causal Embedding With Contrastive Learning For Recommender System (WWW 2023)
一些研究消除流行度偏差来得到纯正的兴趣,如IPS或者利用一小部分无偏数据。这虽然消除了从重效应但是流行度有正面影响应该被保留。流行度偏差过强,或导致推荐系统失去个性化;物料因内在质量而高热,过度打压流行度偏差又会破坏用户体验。有必要同时对用户兴趣与用户从众性建模。DICE 模型,利用因果推断技术,将混杂了兴趣与从众性的传统 embedding 解耦,达到了同时利用流行度偏差与用户兴趣,以提升推荐指标的目的。
2023-04-04 14:16:10 510 1
原创 CIKM22:Causal Intervention for Sentiment De-biasing in Recommendation
在现实世界的推荐场景中,用户通过评论、评分和其他格式与 RS 交互,以表达他们对项目的情绪和意见。提出用因果推断进行情感除偏CISD模型1)在训练阶段消除了情感偏差的影响2)在推理阶段引入用户情绪。
2023-04-04 14:09:29 218 1
原创 Neutralizing Popularity Bias in Recommendation Models
item embedding 中蕴含了流行度偏差(Popularity Bias)在五个模型上实验(BPR, LightGCN , WMF , ItemAE, eALS)T-检验:r代表流行物品和长尾物品有多少embedding 方向不同Spearman’s Rank Correlation:p表示大多数embedding 方向都与流行度有关但是在表示层(representation level)除偏的工作还没有IPS的方法 对权策略非常敏感。
2023-03-31 14:09:43 188 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人