Disentangled Representation for Diversified Recommendations
概述
将推荐系统学习到的用户表示(user representation)解耦为类别无关(category-independent)的和类别(category-dependent)有关的部分(如质量),来得到用户的喜好。
推荐多样性(diversity)它衡量推荐项目对某些项目属性(例如项目类别)之间的差异也对整体用户体验起着重要作用。
要达到©,这要求推荐模型清楚地区分用户的正/负反馈是由于项目的类别或其他与类别无关的项目特征(例如,项目自己的质量),这被以前的推荐模型忽略。
Framework
将用户偏好解耦为以下俩个部分:
Category-dependent preference:它捕获了用户对项目类别的偏好;
Category-independent preference: 它描述了类别无关的特征如何影响用户对项目的偏好。
概率视角的解耦
ti={c1, c2} 表示第i个物品与种类c1, c2有关。 Y C~ u,i~代表用户u对物品i的种类的反馈
等式最后一行可以理解为:
第一部分代表了当物品的种类是用户喜欢的时,用户给出正面反馈的概率。
第二部分表示用户对物品种类的喜好程度。
之后可以将前半部分归纳为类别无关,(正交C),将等式转化为:
DCRS 学习两个解耦的表示,模型架构图:
Discriminator Module
h⊥C u,i用来提取与类别无关的喜好,hC u,i用来提取与类别有关的喜好,Discriminator要做的是让h⊥C u,i预测出来的ti与真实的ti差别越大,让hC u,i预测出来的ti与真实的ti差别越小。其中用到了Gradient Reverse Layer (GRL)对需要max的LOSS进行梯度反转。
Learning category-independent representation
任务:预测评分和与类别独立
Learning category-dependent representation
由于用户u对物品i的类别偏好无法观测,P (Y C u,i = 1|u, ti)可以通过固定h⊥C u,i(stop gradient(h⊥C u,i))并估计用户u给出的总体概率得到。
也就是当给定了无关偏好,可以通过最小化损失来优化用户 u 对项目 i 类别的偏好,以准确预测用户 u 对项目 i 的整体反馈:
将两种方式结合起来得到最终的损失函数:
Inference
在推理阶段将下面的预测值,来当作u对i的喜好程度,考虑与用户的类别依赖和独立偏好。