Disentangled Causal Embedding With Contrastive Learning For Recommender System (WWW 2023)

Disentangled Causal Embedding With Contrastive Learning For Recommender System (WWW 2023)

问题

一些研究消除流行度偏差来得到纯正的兴趣,如IPS或者利用一小部分无偏数据。这虽然消除了从重效应但是流行度有正面影响应该被保留。流行度偏差过强,或导致推荐系统失去个性化;物料因内在质量而高热,过度打压流行度偏差又会破坏用户体验。有必要同时对用户兴趣与用户从众性建模。DICE 模型,利用因果推断技术,将混杂了兴趣与从众性的传统 embedding 解耦,达到了同时利用流行度偏差与用户兴趣,以提升推荐指标的目的。但其仍然存在缺陷,1)数据集中本身无法准确区分从众性样本和兴趣样本,DICE 使用的模糊区分方法或引入噪声。2)DICE 忽略了样本长尾问题,低频物品的causal不充足,对低频物料不友好。

本文提出在可观测到的数据上使用对比学习来得到解耦的causal embedding。样本增强很好地处理了数据稀疏问题并提高了cause表示。

对比学习

在这里插入图片描述

每个用户或物料均有两套embedding,即兴趣embedding Euint和从众性embeddingEuconf

对于给定的大小为N的Batch,将与用户交互过的作为正样本,其他用户交互的作为负样本。

兴趣embedding建模公式如下,其中(𝐸𝑢 𝑖𝑛𝑡 , 𝐸𝑖+𝑖𝑛𝑡)表示正例对;(𝐸𝑢 𝑖𝑛𝑡 , 𝐸𝑖−𝑖𝑛𝑡)表示负例对;

S () S() S()表示内积运算,I~pop ​~表示联系的物品流行度,起到打压高热物品功能。

在这里插入图片描述

从众性embedding与兴趣embedding的建模方式整体类似,公式如下。在从众性建模的负样本中,额外过滤掉热度高于正样本的物料,以确保物料从众性embedding可捕捉热度信息。

在这里插入图片描述

看了文章知道为啥这样写Loss 让正样本与Euint相似度越大 负样本越小

zhuanlan.zhihu.com/p/435…

在这里插入图片描述

如DCCL模型框架图所示,表示兴趣embedding与从众性embedding拼接后使用BPR loss训练的任务。DCCL模型整体loss如下,α β为超参数。

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值