Causal Intervention for Sentiment De-biasing in Recommendation
解决问题
在现实世界的推荐场景中,用户通过评论、评分和其他格式与 RS 交互,以表达他们对项目的情绪和意见。
提出用因果推断进行情感除偏CISD模型
1)在训练阶段消除了情感偏差的影响
2)在推理阶段引入用户情绪
因果图
(a)传统的 RS 通过执行用户-项目匹配来预测评级分数Y。节点 U 和 I 是用户和项目表示。
(b) 情感节点 S 和未观察到的混杂因素 C 是混淆偏差的原因。
© 使用因果干预切断虚假相关边缘。
Deconfounded training
利用后门调整的思想,对U和I进行do操作,切断从节点S所有边,以消除混淆效应。
为了做评分预测,将用户评论特征和id 的embedding 输入到hidden layer
Xu 和 Yi 是用户和物品的表示向量,qu和pi分别是用户和物品的id embedding
预测的评分由一个MLP和用户偏差(user bias)、物品偏差(item bias)、全局偏差(global bias)构成。
由于预测评分是一个回归问题,所以Loss函数用的是MSE。
Inference strategy
在推理阶段适量使用情感信息,促进个性化推荐。
使用从物品评论列表中提取的情感倾向来评估物品,从用户评论列表估计用户对某一物品的喜好。
融合策略将情感信息添加到预测评分中,𝛿 是tanh激活函数
最终预测得分Y表示为上式。