CIKM22:Causal Intervention for Sentiment De-biasing in Recommendation

Causal Intervention for Sentiment De-biasing in Recommendation

解决问题

在现实世界的推荐场景中,用户通过评论、评分和其他格式与 RS 交互,以表达他们对项目的情绪和意见。

提出用因果推断进行情感除偏CISD模型

1)在训练阶段消除了情感偏差的影响

2)在推理阶段引入用户情绪

因果图

在这里插入图片描述

(a)传统的 RS 通过执行用户-项目匹配来预测评级分数Y。节点 U 和 I 是用户和项目表示。

(b) 情感节点 S 和未观察到的混杂因素 C 是混淆偏差的原因。

© 使用因果干预切断虚假相关边缘。

Deconfounded training

利用后门调整的思想,对U和I进行do操作,切断从节点S所有边,以消除混淆效应。

在这里插入图片描述

为了做评分预测,将用户评论特征和id 的embedding 输入到hidden layer

在这里插入图片描述

Xu 和 Yi 是用户和物品的表示向量,qu和pi分别是用户和物品的id embedding

在这里插入图片描述

预测的评分由一个MLP和用户偏差(user bias)、物品偏差(item bias)、全局偏差(global bias)构成。

在这里插入图片描述

由于预测评分是一个回归问题,所以Loss函数用的是MSE。

Inference strategy

在推理阶段适量使用情感信息,促进个性化推荐。

使用从物品评论列表中提取的情感倾向来评估物品,从用户评论列表估计用户对某一物品的喜好。

在这里插入图片描述

融合策略将情感信息添加到预测评分中,𝛿 是tanh激活函数

在这里插入图片描述

最终预测得分Y表示为上式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值