神经网络和深度学习第三周检测

答案见下方


1.以下哪一项是正确的?

A. X是一个矩阵,其中每个列都是一个训练示例。
B. a^ [2]_4 是第二层第四层神经元的激活的输出。
C. a^ [2] (12)表示第二层的第12个样本的激活向量。
D. a^ [2] 表示第二层的激活向量。

2.tanh激活函数通常比隐藏层单元的sigmoid激活函数效果更好,因为其输出的平均值更接近于零,因此它将数据集中在下一层是更好的选择,请问正确吗?

A. True
B. False

3.其中哪一个是第l层向前传播的正确向量化实现,其中1≤ l ≤L

A. Z^ [l]=W^ [l]A^ [l−1]+b[l]
B. A^ [l]=g^ [l] (Z^ [l])

4.您正在构建一个识别黄瓜(y = 1)与西瓜(y = 0)的二元分类器。 你会推荐哪一种激活函数用于输出层?

A. ReLU
B. Leaky ReLU
C. sigmoid
D. tanh

5.看一下下面的代码:请问B.shape的值是多少?

A = np.random.randn(4,3)
B = np.sum(A, axis = 1, keepdims = True)

6.假设你已经建立了一个神经网络。 您决定将权重和偏差初始化为零。 以下哪项陈述是正确的?

A. 第一个隐藏层中的每个神经元节点将执行相同的计算。 所以即使经过多次梯度下降迭代后,层中的每个神经元节点都会计算出与其他神经元节点相同的东西。
B. 第一个隐藏层中的每个神经元将在第一次迭代中执行相同的计算。 但经过一次梯度下降迭代后,他们将学会计算不同的东西,因为我们已经“破坏了对称性”。
C. 第一个隐藏层中的每一个神经元都会计算出相同的东西,但是不同层的神经元会计算不同的东西,因此我们已经完成了“对称破坏”。
D. 即使在第一次迭代中,第一个隐藏层的神经元也会执行不同的计算, 他们的参数将以自己的方式不断发展。

7.Logistic回归的权重w应该随机初始化,而不是全零,因为如果初始化为全零,那么逻辑回归将无法学习到有用的决策边界,因为它将无法“破坏对称性”,是正确的吗?

A. True
B. False

8.您已经为所有隐藏单元使用tanh激活建立了一个网络。 使用np.random.randn(…,…)* 1000将权重初始化为相对较大的值。 会发生什么?

A. 这没关系。只要随机初始化权重,梯度下降不受权重大小的影响。
B. 这将导致tanh的输入也非常大,因此导致梯度也变大。因此,您必须将α设置得非常小以防止发散; 这会减慢学习速度。
C. 这会导致tanh的输入也非常大,导致单位被“高度激活”,从而加快了学习速度,而权重必须从小数值开始。
D. 这将导致tanh的输入也很大,因此导致梯度接近于零, 优化算法将因此变得缓慢。

9.看一下下面的单隐层神经网络:

在这里插入图片描述

A. b^ [1] 的维度是(4, 1)
B. W^ [1] 的维度是 (4, 2)
C. W^ [2] 的维度是 (1, 4)
D. b^ [2] 的维度是 (1, 1)

10.I在和上一个相同的网络中,Z^ [1] 和 A^ [1]的维度是多少?

答:


答案:

  1. ABCD

  2. A

  3. AD

  4. C

  5. B.shape = (4, 1) #keepdims = True)来确保A.shape是(4,1)
    
  6. A

  7. A

  8. D

  9. ACD(B应该是(4,3))

  10. Z^ [1] 和 A^ [1]的维度都是 (4,m)(注意z和Z的区别:z表示单个样本,Z表示所有样本)

D

  1. ACD(B应该是(4,3))

  2. Z^ [1] 和 A^ [1]的维度都是 (4,m)(注意z和Z的区别:z表示单个样本,Z表示所有样本)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值