第十七章 MMDetection3D解析系列八_权重初始化(车道线感知)

本文详细介绍了如何在Pytorch中,特别是MMEngine框架下,使用配置式初始化和自定义方式对模型的权重进行初始化,包括预训练权重加载、常见的初始化策略以及对自定义模块的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 前言

近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。

二 简介

基于 Pytorch 构建模型时,我们通常会选择 nn.Module 作为模型的基类,搭配使用 Pytorch 的初始化模块 torch.nn.init,完成模型的初始化。MMEngine 在此基础上抽象出基础模块(BaseModule),让我们能够通过传参或配置文件来选择模型的初始化方式。

三 配置式初始化

为了能够更加灵活地初始化模型权重,MMEngine 抽象出了模块基类 BaseModule。模块基类继承自 nn.Module,在具备 nn.Module 基础功能的同时,还支持在构造时接受参数,以此来选择权重初始化方式。继承自 BaseModu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值