文章目录
- BiFPN
-
- 一、BiFPN介绍
-
- 1.1 简介
- 1.2 BiFPN
-
- (1)跨尺度连接
- (2)加权特征融合
- 1.3 EfficientDet
-
- (1)模型框架
- (2)复合缩放
- 二、添加方式1:Add操作
-
-
- 第①步:在common.py中添加BiFPN模块
- 第②步:在yolo.py文件里的parse_model函数加入类名
- 第③步:创建自定义的yaml文件
- 第④步:验证是否加入成功
- 第⑤步:修改train.py
-
- 三、添加方式2:Concat操作
-
-
- 第①步:在common.py中添加BiFPN模块
- 第②步:在yolo.py文件里的parse_model函数加入类名
- 第③步:创建自定义的yaml文件
- 第④步:验证是否加入成功
- 第⑤步:修改train.py
-
- Neck之AFPN
-
- 一、AFPN介绍
-
- img1.1 简介
- 1.2 提取多级特征
- 1.3 渐进架构
- 1.4 自适应空间融合
- 1.5 实验
- 二、更换AFPN的方法
-
-
- 第①步:在common.py中添加AFPN模块
- 第②步:修改yolo.py文件
- 第③步:创建自定义的yaml文件
-
- BiFusion
-
-
-
- YOLOv6贡献
- BiFusion Neck 融合的原理
- BiFusion Neck结构图
- 参数量与计算量
- YOLOv5 BiFusion Neck 配置文件
-
-
BiFPN
一、BiFPN介绍
1.1 简介
EfficientDet 是继 2019 年推出 EfficientNet 模型之后,Google 人工智能研究小组Tan Mingxing等人为进一步提高目标检测效率,以 EfficientNet 模型和双向特征加权金字塔网络 BiFPN为基础,于2020 年创新推出的新一代目标检测模型,在COCO数据集上吊打其他方法。
EfficientDet = Backbone(EfficientNet) + Neck(BiFPN) + Head(class + box)
1.2 BiFPN
(1)跨尺度连接
- 移除那些只