YOLOv5改进系列(二十五) 知识蒸馏理论与实践

知识蒸馏基础原理精讲

1. 什么是知识蒸馏?

在这里插入图片描述

知识蒸馏就是把一个大的教师模型的知识萃取出来,把他浓缩到一个小的学生模型,可以理解为一个大的教师神经网络把他的知识教给小的学生网络,这里有一个知识的迁移过程,从教师网络迁移到了学生网络身上,教师网络一般是比较臃肿,所以教师网络把知识教给学生网络,学生网络是一个比较小的网络,这样就可以用学生网络去做一些轻量化网络做的事情。

2. 轻量化网络的方式有哪些?

  1. 压缩已训练好的模型:知识蒸馏、权值量化、权重剪枝、通道剪枝、注意力迁移
  2. 直接训练轻量化网络:SqueezeNet、MobileNetv1v2v3、MnasNet、SHhffleNet、Xception、EfficientNet、EfficieentDet
  3. 加速卷积运算:im2col+GEMM、Wiongrad、低秩分解
  4. 硬件部署:TensorRT、Jetson、TensorFlow-Slim、openvino、FPGA集成电路

3. 为什么要进行知识蒸馏?

深度学习在计算机视觉、语音识别、自然语言处理等内的众多领域中均取得了令人难以置信的性能。但是,大多数模型在计算上过于昂贵,无法在移动端或嵌入式设备上运行。因此需要对模型进行压缩,这样小的模型就适用于部署在终端设备上了。

3.1 提升模型精度

如果对目前的网络模型A的精度不是很满意,那么可以先训练一个更高精度的teacher模型B(通常参数量更多,时延更大),然后用这个训练好的teacher模型B对student模型A进行知识蒸馏,得到一个更高精度的A模型。

3.2 降低模型时延,压缩网络参数

如果对目前的网络模型A的时延不满意,可以先找到一个时延更低,参数量更小的模型B,通常来讲,这种模型精度也会比较低,然后通过训练一个更高精度的teacher模型C来对这个参数量小的模型B进行知识蒸馏,使得该模型B的精度接近最原始的模型A,从而达到降低时延的目的。

3.3 标签之间的域迁移

假如使用狗和猫的数据集训练了一个teacher模型A,使用香蕉和苹果训练了一个teacher模型B,那么就可以用这两个模型同时蒸馏出一个可以识别狗、猫、香蕉以及苹果的模型,将两个不同域的数据集进行集成和迁移。

4. 知识蒸馏的理论依据?

知识蒸馏使用的是Teacher—Student模型,其中teacher是“知识”的输出者,student是“知识”的接受者。知识蒸馏的过程分为2个阶段:

  1. 原始模型训练: 训练"Teacher模型", 简称为Net-T,它的特点是模型相对复杂,也可以由多个分别训练的模型集成而成。我们对"Teacher模型"不作任何关于模型架构、参数量、是否集成方面的限制,唯一的要求就是,对于输入X, 其都能输出Y,其中Y经过softmax的映射,输出值对应相应类别的概率值。
  2. 精简模型训练: 训练"Student模型", 简称为Net-S,它是参数量较小、模型结构相对简单的单模型。同样的,对于输入X,其都能输出Y,Y经过softmax映射后同样能输出对应相应类别的概率值。
  3. Teacher学习能力强,可以将它学到的知识迁移给学习能力相对弱的Student模型,以此来增强Student模型的泛化能力。复杂笨重但是效果好的Teacher模型不上线,就单纯是个导师角色,真正部署上线进行预测任务的是灵活轻巧的Student小模型。

5. 知识蒸馏分类

知识蒸馏是对模型的能力进行迁移,根据迁移的方法不同可以简单分为基于目标蒸馏(也称为Soft-target蒸馏或Logits方法蒸馏)和基于特征蒸馏的算法两个大的方向。

5.1目标蒸馏-Logits方法

分类问题的共同点是模型最后会有一个softmax层,其输出值对应了相应类别的概率值。在知识蒸馏时,由于我们已经有了一个泛化能力较强的Teacher模型,我们在利用Teacher模型来蒸馏训练Student模型时,可以直接让Student模型去学习Teacher模型的泛化能力。一个很直白且高效的迁移泛化能力的方法就是:使用softmax层输出的类别的概率来作为“Soft-target”

5.1.1 Hard-target 和 Soft-target

注:soft target“软标签”指的是大网络在每一层卷积后输出的特征映射。

5.1.1.1 Hard-target和 Soft-target的区别

传统training过程(hard targets): 对ground truth求极大似然

(原始数据集标注的 one-shot 标签,除了正标签为 1,其他负标签都是 0。)

KD的training过程(soft targets): 用large model的class probabilities作为soft targets

Teacher模型softmax层输出的类别概率,每个类别都分配了概率,正标签的概率最高,并且标签都以小数分布,0.1,0.35.,0.6。)

5.1.1.2 KD的训练过程为什么更有效?

在这里插入图片描述

以手写数字为例,教师网络对数字 1 的预测标签为 “1”:0.7,“7”:0.2,“9”:0.1,这里1的预测概率最大为0.7 是正确的分类,但是标签 "7""9"的预测概率也能提供一些信息,就是说 “7”,"9"和预测标签 1 还是有某种预测的相似度的。如果把这个信息也教会学生网络,学生网络就可以了解到这种类别之间的相似度,可以看作为学习到了教师网络中隐藏的知识,对于学生网络的分类是有帮助的。

综上:

(1)在使用Soft-target训练时,Student模型可以很快学习到Teacher模型的推理过程。

(2)传统的Hard-target的训练方式,所有的负标签都会被平等对待。Soft-targetStudent模型带来的信息量要大于Hard-target,并且Soft-target分布的熵相对高时,其Soft-target蕴含的知识就更丰富。

(3)使用Soft-target训练时,梯度的方差会更小,训练时可以使用更大的学习率,所需要的样本也更少。

这也解释了为什么通过蒸馏的方法训练出的Student模型相比使用完全相同的模型结构和训练数据只使用Hard-target的训练方法得到的模型,拥有更好的泛化能力。

5.2 特征蒸馏方法

  1. 它不像Logits方法那样,Student只学习Teacher的Logits这种结果知识,而是学习Teacher网络结构中的中间层特征。它强迫Student某些中间层的网络响应,要去逼近Teacher对应的中间层的网络响应。这种情况下,Teacher中间特征层的响应,就是传递给Student的知识,本质是Teacher将特征级知识迁移给Student

  2. 既宽又深的模型通常需要大量的乘法运算,从而导致对内存和计算的高需求。为了解决这类问题,我们需要通过模型压缩(也称为知识蒸馏)将知识从复杂的模型转移到参数较少的简单模型。到目前为止,知识蒸馏技术已经考虑了Student网络与Teacher网络有相同或更小的参数。这里有一个洞察点是,深度是特征学习的基本层面,到目前为止尚未考虑到Student网络的深度。一个具有比Teacher网络更多的层但每层具有较少神经元数量的Student网络称为“thin deep network”。

    因此,该篇论文主要针对Hinton提出的知识蒸馏法进行扩展,允许Student网络可以比Teacher网络更深更窄,使用teacher网络的输出和中间层的特征作为提示,改进训练过程和student网络的性能。

6. 知识蒸馏的过程

在这里插入图片描述

如上图所示,教师网络(左侧)的预测输出除以温度参数(Temperature)之后、再做Softmax计算,可以获得软化的概率分布(软目标或软标签),数值介于0−1之间,取值分布较为缓和。Temperature数值越大,分布越缓和;而Temperature数值减小,容易放大错误分类的概率,引入不必要的噪声。针对较困难的分类或检测任务,Temperature通常取1,确保教师网络中正确预测的贡献。硬目标则是样本的真实标注,可以用One-hot矢量表示。Total loss设计为软目标与硬目标所对应的交叉熵的加权平均(表示为KD lossCE loss),其中软目标交叉熵的加权系数越大,表明迁移诱导越依赖教师网络的贡献,这对训练初期阶段是很有必要的,有助于让学生网络更轻松的鉴别简单样本,但训练后期需要适当减小软目标的比重,让真实标注帮助鉴别困难样本。另外,教师网络的预测精度通常要优于学生网络,而模型容量则无具体限制,且教师网络推理精度越高,越有利于学生网络的学习。

教师网络与学生网络也可以联合训练,此时教师网络的暗知识及学习方式都会影响学生网络的学习,具体如下(式中三项分别为教师网络Softmax输出的交叉熵loss、学生网络Softmax输出的交叉熵loss、以及教师网络数值输出与学生网络Softmax输出的交叉熵loss

6.1 升温(T)操作

蒸馏的时候一般都需要进行升温操作,以分类网络为例,需要改进softmax,除以T

在这里插入图片描述

image-20231215144004154

6.2 温度(T)特点

  • 原始的softmax函数是T=1时的特例;T<1 时,概率分布比原始更“陡峭”,也就是说,当 T>0时,Softmax 的输出值会接近于 Hard-targetT>1时,概率分布比原始更“平缓”。
  • 随着T的增加,Softmax 的输出分布越来越平缓,信息熵会越来越大。温度越高,softmax上各个值的分布就越平均,思考极端情况,当 ,此时softmax的值是平均分布的。
  • 不管温度T怎么取值,Soft-target都有忽略相对较小的(Teacher模型在温度为T时softmax输出在第i类上的值)携带的信息的倾向。
  • 温度的高低改变的是Student模型训练过程中对负标签的关注程度。当温度较低时,对负标签的关注,尤其是那些显著低于平均值的负标签的关注较少;而温度较高时,负标签相关的值会相对增大,Student模型会相对更多地关注到负标签。
  • 实际上,负标签中包含一定的信息,尤其是那些负标签概率值显著高于平均值的负标签。但由于Teacher模型的训练过程决定了负标签部分概率值都比较小,并且负标签的值越低,其信息就越不可靠。因此温度的选取需要进行实际实验的比较,本质上就是在下面两种情况之中取舍:
    • 当想从负标签中学到一些信息量的时候,温度应调高一些;
    • 当想减少负标签的干扰的时候,温度 应调低一些;

总的来说,温度的选择和Student模型的大小有关,Student模型参数量比较小的时候,相对比较低的温度就可以了。因为参数量小的模型不能学到所有Teacher模型的知识,所以可以适当忽略掉。

7. 蒸馏损失计算过程

在这里插入图片描述

在分类网络中知识蒸馏的 Loss 计算

  • 上部分教师网络,它进行预测的时候, softmax要进行升温,升温后的预测结果我们称为软标签(soft label)
  • 学生网络一个分支softmax的时候也进行升温,在预测的时候得到软预测(soft predictions),然后对soft labelsoft predictions 计算损失函数,称为distillation loss ,让学生网络的预测结果接近教师网络;
  • 学生网络的另一个分支,在softmax的时候不进行升温T =1,此时预测的结果叫做hard prediction 。然后和hard label也就是 ground truth直接计算损失,称为student loss
  • 总的损失结合了distilation lossstudent loss ,并通过系数a加权,来平衡这两种Loss ,比如与教师网络通过MSE损失,学生网络与ground truth通过cross entropy损失, Loss的公式可表示如下:

L = ( 1 − α ) ⋅ L M S E K D + α ⋅ L C E K D \mathcal{L}=(1-\alpha)\cdot\mathcal{L}_{\mathrm{MSE}}^{\mathrm{KD}}+\alpha\cdot\mathcal{L}_{\mathrm{CE}}^{\mathrm{KD}} L=(1α)LMSEKD+αLCEKD

8. 知识蒸馏在NLP/CV中的应用

8.1 目标蒸馏-Logits方法应用

  • 《Distilling the Knowledge in a Neural Network 》,NIPS,2014。
  • 《Deep Mutual Learning》,CVPR,2018。
  • 《Born Again Neural Networks》,CVPR,2018。
  • 《Distilling Task-Specific Knowledge from BERT into Simple Neural Networks》,2019。

8.2 特征蒸馏方法应用

  • 《FitNets: Hints for Thin Deep Nets》,ICLR,2015。
  • 《Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer》, ICLR,2017。
  • 《A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning》,CVPR,2017。
  • 《Learning Efficient Object Detection Models》,NIPS,2017。

9. 知识蒸馏的误区

不要认为学生模型通过蒸馏就可以达到教师模型的水平的,知识蒸馏的学生网络是很难达到和教师模型性能相同的水准的。


参考文献

[1] 【精读AI论文】知识蒸馏_哔哩哔哩_bilibili

知识蒸馏理论篇

在这里插入图片描述

1.《Object detection at 200 Frames Per Second》

在这里插入图片描述

首先我们来看一下《Object detection at 200 Frames Per Second》这篇论文对知识蒸馏的描述。

1.1 蒸馏难点

image-20231215144211580

在这里插入图片描述

图3:蒸馏方法的总体架构。蒸馏损失用于标记和未标记数据。

1.2 蒸馏损失

1

1.3 实验结果

在这里插入图片描述

Pascal VOC 2007 上不同策略的蒸馏性能比较。结果显示为两个教师网络和两组标记的训练数据(Pascal VOC 和 Pascal VOC 和 COCO 的组合)。


2. 《Learning Efficient Object Detection Models with Knowledge Distillation》

在这里插入图片描述

这篇文章主要描述的是在Faster-RCNN上做知识蒸馏的过程,分为蒸特征蒸输出两部分,其中蒸特征是使用的FitNet的方法在backbone做,在RPN和分类回归网络(RCN)部分蒸输出,两个部分都同时做分类和回归蒸馏。分类是做了一个weighted交叉熵,回归是做了一个bounded回归损失(即如果学生回归的比老师好,那就没有损失),再加上GT的损失,构成一个整体。

2.1 目标检测中的知识蒸馏

  • image-20231215144430670

在这里插入图片描述

图 1:使用 Faster-RCNN 提出的视觉对象检测任务学习方案,主要由区域提议网络(RPN)和区域分类网络(RCN)组成。这两个网络都使用多任务损失来共同学习分类器和边界框回归器。我们使用教师 RPNRCN 的最终输出作为蒸馏目标,并将中间层输出作为提示。红色箭头表示反向传播路径。

2.2 蒸馏方法

教师网络的知识提取分为三点:中间层 Feature MapsHintRPN/RCN 中分类层的 knowledge;以及RPN/RCN 中回归层的 knowlege。具体如下:
image-20231215144500422

2.3 分类任务

2.4 回归任务

image-20231215144657714

2.5 特征蒸馏

image-20231215144716876

2.6 实验结果

在这里插入图片描述

大模型蒸小模型的性能提高。以小模型作为student,大模型作为teacher,当teacher性能越好,student也会得到更多的性能提高。整体提高大约在 0.2 − 4.7 0.2-4.7 0.2−4.7个点(数据集难度不同)。

在这里插入图片描述

自己(大尺度输入)蒸馏自己(小尺度),但是图像的输入尺寸一个是另外一个的两倍。结果是蒸馏比不蒸馏高了3-4 点(最简单的PASCAL数据集),只比大尺度输入低了不到一个点。

2.7 总结

这是第一篇将知识蒸馏用到检测的论文。对网络进行蒸特征和蒸结果(分类和回归),蒸特征采用的FitNet的做法对backbone进行学习,蒸分类时,考虑到背景数量远大于前景,且更容易把前背景搞混而非前景类别分错,因此将背景的损失惩罚增大。在回归时,设置了一个upper bound,即studentteacher回归的好一定程度时,不再计算回归蒸馏损。


知识蒸馏实战篇

在这里插入图片描述


0. 环境准备

终端键入:

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

本项目所用代码在文章最下方。

本知识蒸馏项目所用环境和YOLOv5官方环境相同。

本篇博文采用yolov5m为教师网络,yolov5s为学生网络。


1. 训练学生网络

python train.py --data data/coco128.yaml --cfg models/yolov5s.yaml 
--weights yolov5s.pt --batch-size 16 --epochs 300 --workers 8 --name yolov5s-baseline

如果我们选择自己的baseline当作学生网络,这就要求你再训练一个较大的教师网络

如果我们选择自己的baseline当作教师网络,这就要求你再训练一个较小的学生网络


2. 训练教师网络

python train.py --data data/coco128.yaml --cfg models/yolov5m.yaml --weights yolov5m.pt 
--batch-size 16 --epochs 300 --workers 8 --name yolov5m-baseline

教师网络的各项评价指标要显著大于学生网络,这样才能有一个好的蒸馏效果。


3. 知识蒸馏训练

runs/train/yolov5s-baseline/weights/best.ptruns/train/yolov5m-baseline/weights/best.pt拷贝到weights文件夹下,分别改名为yolov5s_studentyolov5m_teacher

python train_distillation.py --weights weights/yolov5s_student.pt --cfg models/yolov5s.yaml 
--data data/coco128.yaml --batch-size 8 --epochs 300 --workers 8 
--t_weights weights/yolov5m_teacher.pt --hyp data/hyps/hyp.scratch-low-distillation.yaml 
--distill --dist_loss l2 --name yolov5s-distilled
  • --weights:学生网络权重路径
  • --t_weights:教师网络权重路径
  • --distill:使用知识蒸馏进行训练
  • --dist_lossl2或者kl(默认l2
  • --temperature:知识蒸馏时的温度(默认20

蒸馏操作完成后我们可以在runs/train/yolov5s-distilled/weights路径下找到自己蒸馏后的模型权重文件。


4. 实验结果

我这里--dist_loss采用l2损失,大家也可以尝试使用kl损失。

模型PRmAP@.5mAP@.5:.95
学生网络s0.7290.6950.7490.447
教师网络m0.7460.7110.7650.498
蒸馏后学生网络s0.7290.7060.7590.459

5. YOLOv5官方项目修改说明

  • 增加data/hyps/hyp.scratch-low-distillation.yaml超参数配置文件。
  • utils/loss.py中添加compute_distillation_output_loss
  • 增加train_distillation.py文件

6. 源码

https://pan.baidu.com/s/1g4C60ffoVpuCX2oA6uZDOw?pwd=csdn


7.常见错误

Q:UnboundLocalError:local variable ‘t_model’ referenced before assignment

A:--distill参数没开启,可以用控制台执行蒸馏指令,或者将--distill后添加default='True'


8. 参考代码

https://github.com/Sharpiless/Yolov5-distillation-train-inference

https://github.com/midasklr/yolov5prune/tree/v6.0

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值