文章目录
-
- 一、小目标检测的介绍
-
- 1.1 什么是小目标?
- 1.2 小目标检测遇到的问题
- 1.3 解决方法
- 1.4 YOLOv5中的优化方法
- 二、YOLOv5增加小目标层的方法
-
- 2.1 网络结构
- 2.2 添加步骤
-
- 第①步 创建自定义yaml文件
- 第②步 验证是否添加成功
一、小目标检测的介绍
1.1 什么是小目标?
(1)以物体检测领域的通用数据集COCO物体定义为例,小目标是指小于32×32个像素点(中物体是指3232-9696,大物体是指大于96*96)。
(2)在实际应用场景中,通常更倾向于使用相对于原图的比例来定义:物体标注框的长宽乘积,除以整个图像的长宽乘积,再开根号,如果结果小于3%,就称之为小目标。
其他定义:
- 目标边界框的宽高与图像的宽高比例小于一定值,通用值为0.1
- 边界框面积与图像面积之比的中位数在0.08%~0.58%之间
- 根据目标实际覆盖像素与图像总像素之间比例对小目标进行定义
1.2 小目标检测遇到的问题
(1)大小目标混合的场合
在这种场合中,一张图片上有少数的大目标,有小目标。
常见的问题有:
- 能够准确