内容介绍:
个人的学习笔记
本文从初步的神经网络并逐步延伸到目标检测的有关内容,仅仅是概略性解读,后期会详细介绍重要知识点与模型**。
深度神经网络DNN | 卷积神经网络CNN | 区域卷积神经网络RNN | 经典网络模型二十余种。
具体模型:LeNet-5 | AlexNet | ZFNet | VGGNet | GoogLeNet | ResNet | DenseNet | SeNet | MobileNet | ShuffleNet | RepVGG | MobileOne | FasterNet | R-CNN | SPPNet | Fast RNN | Faster RNN | R-FCN | SSD |
文章目录
- 前言
- 深度神经网络(Deep Neural Networks,DNN)
- 卷积神经网络(Convolutional Neural Networks,CNN)
-
- 参考链接
- 卷积运算
- 卷积背后的直觉
- 卷积神经网络的层级结构
- 感受野
- 卷积神经网络中的不变性
- 非线性映射函数
- 优化器
- 通用矩阵乘(GEMM)
- Flatten层与全连接层(FC layer)
- 全连接与卷积转换
- 参数初始化
- 归一化
- 正则化与Dropout
- 卷积神经网络的训练
- 数据增强
- 超参数的调节
- 卷积神经网络典型CNN
- 学习复现重点
- 区域卷积神经网络(Regions with CNN features,R-CNN)