210_Python+OpenCV_06_图像直方图(histogram)HOG-全局/局部均衡化/直方图比较/反向投影

一、python+OpenCV_06_图像直方图(histogram)HOG

0-255个像素值,每个值出现的频次是多少
在这里插入图片描述
256个bin意思就是有256个竖的条条,bin-size是64,意思是以64为bin宽度,统计频次

# -*- coding:utf-8 -*-
# Linda Li 2019/8/25 15:44 cv_28_图像直方图 PyCharm

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt


def plot_demo(image):
    """
    image.ravel()统计频次的
    bins 256,256条直方
    range[0,256]
    """
    plt.hist(image.ravel(), 256, [0, 256])
    plt.show()


print("-------hello python--------")
src = cv.imread("../cv_02/cv_193.jpeg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)

plot_demo(src)

cv.waitKey(0)
cv.destroyAllWindows()



在这里插入图片描述

二、直方图的API

在这里插入图片描述
在这里插入图片描述在这里插入图片描述整由于张图片比较偏白色,所以三个通道都在255左右取得波峰,把这些值抠出来,其实就可确定人的位置,背景和前景

# -*- coding:utf-8 -*-
# Linda Li 2019/8/25 15:44 cv_28_图像直方图 PyCharm

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt


def plot_hist(image):
    """绘制三个通道的图像,这个是个第三方的API模板"""
    # 三个颜色 i = 0, 1, 2
    color = ('blue', 'green', 'red')

    # 绘制每一个颜色对应的直方图
    for i, color in enumerate(color):

        # 计算直方图
        hist = cv.calcHist(image, [i], None, [256], [0, 256])
        plt.plot(hist, color=color)
        plt.xlim([0, 256])
        plt.show()


print("-------hello python--------")
src = cv.imread("../cv_02/cv_291.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)

plot_hist(src)

cv.waitKey(0)
cv.destroyAllWindows()

三、直方图均值化——增强对比度(全局)

在这里插入图片描述
在这里插入图片描述

# -*- coding:utf-8 -*-
# Linda Li 2019/8/25 17:37 cv_30_直方图均衡化 PyCharm

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt


def equal_hist(image):
    """直方图均值化,是图像增强的一个手段"""

    # opencv中的直方图均衡化都是基于灰度图像的,所以要先将图像变成灰度图像
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    dst = cv.equalizeHist(gray)
    cv.imshow("equal_hist", dst)


print("-------hello python--------")
src = cv.imread("../cv_02/cv_30.png")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)

equal_hist(src)

cv.waitKey(0)
cv.destroyAllWindows()

四、直方图均值化——增强对比度(局部)

在这里插入图片描述
全局的直方图均衡化有些失真

# -*- coding:utf-8 -*-
# Linda Li 2019/8/25 17:37 cv_30_局部直方图均衡化 PyCharm

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt


def clahe_demo(image):
    """局部自适应的直方图均衡化"""

    # openCv中的直方图均衡化都是基于灰度图像的,所以要先将图像变成灰度图像
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

    # clipLimit指的是差异的大小, 8 * 8 的区域
    clahe = cv.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8))

    dst = clahe.apply(gray)
    cv.imshow("clahe_demo", dst)


print("-------hello python--------")
src = cv.imread("../cv_02/cv_30.png")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)

clahe_demo(src)

cv.waitKey(0)
cv.destroyAllWindows()

五、直方图的比较

在这里插入图片描述
解释

  1. 相关性 =1
  2. 卡方
  3. 相交性
  4. 巴氏距离
    == 两张图片如果相似度很高的话,2,3,4都应该很小==
    找相似的图片可以通过做出两张图片的两个直方图排除50%,剩下的可以考虑用比较高级的特征,比如纹理
    ,边缘,角度,梯度特征再比较

在这里插入图片描述
又测试了一张模糊放大的照片相似度如下

在这里插入图片描述
巴氏距离:0.060010098789997, 相关性: 0.9992416574913615, 卡方: 2503696.7459648685

# -*- coding:utf-8 -*-
# Linda Li 2019/8/25 17:37 cv_30_局部直方图均衡化 PyCharm

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt


def create_rgb_hist(image):
    h, w, c = image.shape

    # 初始化1维度
    rgb_hist = np.zeros([16*16*16, 1], np.float32)

    # bins bin的数量 16
    bsize = 256 / 16
    for row in range(h):
        for col in range(w):
            b = image[row, col, 0]
            g = image[row, col, 1]
            r = image[row, col, 2]

            # 把float转换为int之后才可以做index,每一个出现的是在哪个颜色里面,就给他加一
            index = np.int(b/bsize) * 16 * 16 + np.int(g/bsize) * 16 + np.int(r/bsize)

            # 本来都是0,加上1
            rgb_hist[np.int(index), 0] = rgb_hist[np.int(index), 0] + 1

    return rgb_hist


def hist_compare(image1, image2):
    hist1 = create_rgb_hist(image1)
    hist2 = create_rgb_hist(image2)

    # 1.巴氏距离
    match1 = cv.compareHist(hist1, hist2, cv.HISTCMP_BHATTACHARYYA)

    # 2.相关性
    match2 = cv.compareHist(hist1, hist2, cv.HISTCMP_CORREL)

    # 3.卡方-不太好度量,还是用1,2比较多
    match3 = cv.compareHist(hist1, hist2, cv.HISTCMP_CHISQR)

    print("巴氏距离:%s, 相关性: %s, 卡方: %s" % (match1, match2, match3))


print("-------hello python--------")
image1 = cv.imread("../cv_02/cv_193.jpeg")
image2 = cv.imread("../cv_02/cv_181.jpg")
image3 = cv.imread("../cv_02/cv_24r1.png")
cv.imshow("image1", image1)
cv.imshow("image2", image2)
cv.imshow("image3", image3)
# hist_compare(image1, image2)
hist_compare(image1, image3)


cv.waitKey(0)
cv.destroyAllWindows()

六、直方图反向投影

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值