python中typing中的Optional的作用

官网上的说法是在类型注解中表示可选类型,但是实际使用时也可以不加,比如:

from typing import Optional, Text


def foo(arg: int) ->None:
    print("我是foo方法")
    print(arg)


def foo1(arg: int = None) ->None:
    print("我是foo1方法")
    print(arg)


def foo2(arg: Optional[int] = None) -> None:
    print("我是foo2方法")
    print(arg)



c = foo(1)
d = foo1()
e = foo2()

输出为:

我是foo方法
1
我是foo1方法
None
我是foo2方法
None

由foo1()和foo2()函数可知,加不加Optional这个其实没什么区别,python会默认最后一个赋值的形式参数为可选参数,这里我认为加上Optional这个参数主要是为了增加可读性,毕竟形如“int = None”的形式参数赋值容易引起歧义,也即类型注释已经为整数类型,但是你传入的参数确实None(也即‘NoneType’类型),而添加Optional之后就相当于在int和None之间连接起来,也即默认是None,但是可以传入int类型的值(当然由于python没有强制,虽然注释为int类型,你还是可以传入其他类型)。

### Python `typing` 模块概述 Python 的 `typing` 模块提供了一组运行时未强制执行的标准类型定义,用于函数签名中的参数和返回值类型的标注[^1]。这些类型提示有助于提高代码可读性和维护性,并支持静态分析工具来捕获潜在错误。 #### 基本数据类型声明 对于基本的数据类型,在函数定义中可以直接指定输入输出的预期类型: ```python def greet(name: str) -> str: return 'Hello, ' + name ``` 这段代码表明该函数接受一个字符串作为参数并返回一个字符串[^2]。 #### 容器类型声明 当涉及到列表、字典等容器对象时,则可以利用 `List`, `Dict` 等泛型类来进行更精确地描述: ```python from typing import List, Dict def get_squares(numbers: List[int]) -> List[int]: return [n ** 2 for n in numbers] # 或者表示键为整数而值为字符串的映射关系 mapping: Dict[int, str] = {1: "one", 2: "two"} ``` 这里展示了如何通过导入特定名称的方式引入所需的功能组件[^3]。 #### 可选与联合类型 有时变量可能具有多种可能性或允许为空的情况;此时就可以借助于 `Optional` 和 `Union` 来表达这种不确定性: ```python from typing import Optional, Union def divide(dividend: float, divisor: float) -> Optional[float]: if divisor == 0: return None else: return dividend / divisor value: Union[str, int] = "hello" ``` 上述例子说明了处理除零异常以及多态性的方法[^4]。 #### 自定义复杂结构体 除了内置的支持外,还可以创建自己的复合类型以便更好地反映业务逻辑需求: ```python from typing import NamedTuple, Tuple class Point(NamedTuple): x: int y: int point_tuple: Tuple[int, ...] = (1,) * 5 # 表达任意长度但同质化的元组 ``` 此部分介绍了命名元祖和其他高级特性的应用实例[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值