基于LangChain实现RAG(大模型使用通义千问)

RAG(Retrieval-Augmented Generation)是一种结合了检索和生成的方法,旨在提高自然语言处理任务的性能。相对于预训练和微调,RAG的优势在于能够利用外部知识源,如知识图谱或文档数据库,以增强模型的理解和生成能力。此外,RAG还可以通过检索相关信息来减少对大规模预训练数据的依赖,从而降低计算成本。

RAG内容

其全过程可以分为三个步骤:首先,模型会根据输入的查询或问题,从外部知识源(如知识图谱或文档数据库)中检索相关信息;然后,将这些检索到的信息与原始输入结合,形成一个更丰富的上下文;最后,模型基于这个增强的上下文生成回答或文本。通过这种方式,RAG能够利用外部知识源来增强模型的理解和生成能力,从而提高自然语言处理任务的性能。

代码实战

1、首先是要将外挂的知识存储起来,之后大模型会使用,而要存储的话首先需要将文本进行向量化,所以需要文本向量化模型来实现

2、将文本向量化后需要将向量化后的文本信息存储到数据库中,这里使用免费的数据库chroma或者其他的,Milvus在windows上使用起来较为困难,因此可以再试试别的

3、上述过程是也就是检索过程,而增强过程是预先设定一个prompt从检索出来的K个结果中得到最终最符合的结果

4、生成过程使用LLM来根据上面的结果生成

向量化

这里使用的是从huggingface上下载好的模型,也可以使用modelscope下载

from sentence_transformers import SentenceTransformer

### 向量化尝试
hug_path="jina-embeddings-v3"
hug_model=SentenceTransformer(hug_path,trust_remote_code=True)
# hug_model

几种不同的任务:

1、'retrieval.query':查询任务,通常用于检索系统中的查询语句。在此任务中,输入的文本被视为查询,模型将生成一个嵌入向量,用于在检索系统中与其他文档进行匹配。

2、'retrieval.passage':文段任务,通常用于检索系统中的文档片段(passage)。与查询任务类似,但此时输入文本通常是一个文段,模型会生成一个嵌入向量,用于与查询文本进行匹配。

3、'separation':分离任务,用于将不同的文本部分分开处理。通常用于多任务学习或多种类型文本混合的场景,将不同部分的输入文本分开编码,进行后续处理。

4、'classification':分类任务,用于文本分类。模型会将输入文本编码为嵌入向量,然后可以用于分类任务,例如情感分析、话题分类等。

5、'text-matching':文本匹配任务࿰

<think>好的,我现在需要回答用户关于如何在阿里云PAI平台上集成和使用通义或BGE模型的题。首先,我要仔细分析用户的题,确保理解他们的需求。用户可能是在进行AI应用开发,想要利用这些大模型的能力,比如文本生成或者嵌入模型,但不知道具体的步骤和集成方法。 接下来,我需要回顾用户提供的引用内容,特别是引用[2]、[3]、[4]和[5],因为这些涉及到模型训练、RAG应用、LangChain集成和Prompt使用。例如,引用[2]提到Fine-tuning垂直训练大模型和数据准备,这可能和如何在PAI上微调模型相关。引用[3]讨论了使用HuggingFace的嵌入模型,而用户提到的BGE模型可能也需要类似的方法。引用[4]和[5]涉及LangChain框架的集成,这可能对构建应用有帮助。 然后,我需要考虑PAI平台的具体操作步骤。阿里云的PAI平台通常提供了模型部署、训练和管理的界面,可能支持预训练模型的加载和微调。用户需要知道如何访这些功能,如何上传或选择通义或BGE模型,以及如何通过API或SDK集成到自己的应用中。 通义作为大语言模型,可能需要通过PAI提供的模型库直接调用,或者需要自行上传模型文件。而BGE作为嵌入模型,可能需要使用HuggingFace的接口,类似引用[3]中的例子。这里需要确保用户了解如何配置模型路径,安装必要的依赖包,比如llama-index-embeddings-huggingface。 另外,集成到LangChain框架中,用户可能需要参考引用[4]和[5]的内容,利用LangChain的模块来处理模型调用和构建应用流程。例如,创建链式处理流程,将通义用于生成回答,BGE用于文本嵌入,再结合向量数据库进行检索。 可能还需要考虑REST API的使用,如引用[1]提到的Ollama的API,PAI平台可能也提供类似的接口,用户需要了解如何通过API调用来运行模型和管理任务。 在步骤分解时,需要分模块说明:环境准备、模型部署、集成开发、应用构建等。每个步骤要具体,比如在模型部署阶段,用户需要进入PAI控制台,选择模型服务,上传模型文件,配置资源等。集成开发部分需要示例代码,展示如何初始化模型,调用生成或嵌入方法。 还需要注意用户可能遇到的常见题,比如模型路径设置错误、依赖包版本冲突、API权限配置等,应该在注意事项中提到。 最后,生成的相关题要围绕用户可能的后续需求,比如性能优化、微调方法、监控日志、与其他服务集成等,帮助他们进一步深入开发。</think>以下是在阿里云PAI平台上集成和使用通义或BGE模型的步骤说明: ### 一、环境准备 1. **开通PAI服务** 登录阿里云控制台,进入机器学习PAI产品页完成服务开通,确保账户已配置RAM权限[^2]。 2. **创建开发环境** 选择PAI-Designer或PAI-DSW(交互式建模): - **PAI-Designer**:适合可视化拖拽式工作流 - **PAI-DSW**:支持JupyterLab开发环境,需选择GPU规格实例(如ecs.gn6v-c8g1.2xlarge) ### 二、模型部署 #### 通义部署 1. 进入PAI控制台 **模型部署** 模块 2. 通过 **预训练模型市场** 搜索"通义",选择适合的模型版本(如Qwen-7B-Chat) 3. 点击部署按钮,设置以下参数: ```python { "部署类型": "实时推理服务", "计算节点规格": "GPU规格(如V100)", "API访密钥": "自动生成" } ``` 部署完成后会获得REST API端点地址和鉴权密钥[^1] #### BGE模型使用 1. 在PAI-DSW中安装依赖包: ```bash pip install llama-index-embeddings-huggingface transformers ``` 2. 加载模型: ```python from llama_index.embeddings.huggingface import HuggingFaceEmbedding embed_model = HuggingFaceEmbedding(model_name="/models/bge-m3") # 需提前上传模型文件至OSS[^3] ``` ### 三、集成开发 #### LangChain集成示例 ```python from langchain_core.prompts import ChatPromptTemplate from langchain_community.llms import PAIEndpoint # 配置通义接口 qwen_endpoint = PAIEndpoint( endpoint_url="您的API地址", api_key="your_api_key", parameters={"temperature": 0.7} ) # 构建对话链 prompt = ChatPromptTemplate.from_template("用中文回答:{question}") chain = prompt | qwen_endpoint # 调用示例 response = chain.invoke({"question": "解释量子计算原理"}) print(response) ``` #### RAG应用开发 ```python from llama_index.core import VectorStoreIndex, SimpleDirectoryReader # 加载BGE嵌入模型 documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents, embed_model=embed_model) # 创建查询引擎 query_engine = index.as_query_engine(llm=qwen_endpoint) print(query_engine.query("阿里云PAI的主要功能?")) ``` ### 四、应用发布 1. 通过 **PAI-EAS** 服务将应用打包为Docker镜像 2. 配置自动扩缩容策略(建议设置CPU>=4核,内存>=8GB) 3. 使用API网关对外暴露服务接口[^4] $$T_{total} = T_{model\_loading} + T_{preprocessing} + n \times T_{inference}$$ 其中$n$为请求并发数,建议控制在GPU显存80%使用率以下 ### 注意事项 1. 模型文件需存储至OSS并挂载到PAI环境 2. 通义7B模型建议使用至少16GB显存 3. API调用需配置流量控制,建议初始QPS设置为5-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值