linear regression 线性回归

linear regression 线性回归


Notation:
    m = Number of training example
    x's = “input”variable / featurees
    y's = “output”variable / “target”variable

在这里插入图片描述

其中 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1称为模型参数,不同的模型参数会得到不同的假设函数h(x)

如何得到合适的theta值?
  选择能使h(x),即输入x时我们预测的值最接近该样本对应的y值的参数。

在线性回归中,我们要解决最小化问题:
  尽量减少假设的输出与真实房价之差的平方。即min{[h(x)-y]^2}。由于[x(i),y(i)]代表第i个样本,因此对所有训练样本进行一个求和,即
m i n i m i n e 1 2 m ∑ i = 1 m ( h θ ( x i ) − y i ) 2 minimine{ \frac{1}{2m}\sum_{i=1}^{m}\left ( h_{\theta}\left ( x^{i} \right )-y^{i} \right )^2} minimine2m1i=1m(hθ(xi)yi)2
其中 1 2 m \frac{1}{2m} 2m1是为了尽量减少平均误差。
  该问题就变成了:找到训练集中预测值和真实值的差的平方和的 1 2 m \frac{1}{2m} 2m1最小的 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1的值。

在这里插入图片描述

代价函数(cost function) 也被称为平方误差函数(squared error function),或者平方误差代价函数(square error cost function)。是解决回归问题最常用的手段。

(1)简化的代价函数:
在这里插入图片描述

θ 0 \theta_0 θ0的值为0,h(x)是经过(0,0)点的假设函数。

假设函数和代价函数
假设函数 h θ ( x ) h_\theta(x) hθ(x)对于给定的 θ 1 \theta_1 θ1是一个关于x的函数;代价函数 J ( θ 1 ) J(\theta_1) J(θ1)是关于 θ 1 \theta_1 θ1的函数,他控制着直线的斜率。
在这里插入图片描述

我们的优化目标就是要找到对应 J ( θ 1 ) J(\theta_1) J(θ1)最小的 θ 1 \theta_1 θ1的值,在图中可以看出,应该取 θ 1 = 1 \theta_1=1 θ1=1,此时假设函数 h θ ( x ) h_\theta(x) hθ(x)的曲线的拟合效果是最好的。

(2)未简化的代价函数
在这里插入图片描述
代价函数的形状:
在这里插入图片描述
其中,竖轴的高度,即曲面的高度表示代价函数 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)的值

为便于理解,使用等高线图(contour plot)来展示代价函数 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)
在这里插入图片描述
其中,轴为 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1。每个椭圆显示了一系列代价函数 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)相等的点,代价函数的最小值在最中心的椭圆。
在这里插入图片描述
每个 ( θ 0 , θ 1 ) (\theta_0,\theta_1) (θ0,θ1)对应一个 h θ ( x ) h_\theta(x) hθ(x),当代价函数 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)接近最小时,假设函数的拟合效果最好。训练样本与预测值之间距离的平方和是一个所有误差。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值