论文常用 | FineBI v6.0 新图表 | 箱形图

箱形图是用于展示数据分散情况的统计图表,常用于品质管理和数据分析。本文以学生成绩为例,演示在FineBI v6.0中创建箱形图的过程,通过箱体高度分析数据波动,揭示各科目成绩分布特点,如创新技术应用成绩集中,计算机基础成绩分布较广。同时,文章提出了关于显示箱形图异常点的思考题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图,因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。通过箱形图我们可以观察数据是否有偏向性、是否对称、数据是否有异常值、数据分布是否太过密集等。

箱子的中间有一条线,代表了数据的中位数( Q2 )。箱子的上下底,分别是数据的上四分位数(Q3)和下四分位数(Q1),这意味着箱体包含了
50% 的数据。

因此,箱子的高度在一定程度上反映了数据的波动程度。上下边缘则代表了该组数据的最大值和最小值。超出最大值和低于最小值的点,可以理解为数据中的“异常值”。
在这里插入图片描述

不论是统计分析作业还是各类论文数据的分析,箱形图都能很好地帮助大家分析比较数据分布情况。

今天,我们就以一组学生成绩数据为例,教大家如何在FineBI v6.0中通过简单的拖拉拽完成一个箱形图。

首先将excel数据集导入FineBI中。

在这里插入图片描述
确认后,创建分析主题,并命名为学生成绩箱线图。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FR-Lia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值