resnet网络结构代码

ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常突出。ResNet的结构可以极快的加速神经网络的训练,模型的准确率也有比较大的提升。同时ResNet的推广性非常好,甚至可以直接用到InceptionNet网络中。
ResNet的主要思想是在网络中增加了直连通道,即Highway Network的思想。此前的网络结构是性能输入做一个非线性变换,而Highway Network则允许保留之前网络层的一定比例的输出。ResNet的思想和Highway Network的思想也非常类似,允许原始输入信息直接传到后面的层中,如下图所示。
在这里插入图片描述
这样的话这一层的神经网络可以不用学习整个的输出,而是学习上一个网络输出的残差,因此ResNet又叫做残差网络。

#%%
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Typical use:
   from tensorflow.contrib.slim.nets import resnet_v2
ResNet-101 for image classification into 1000 classes:
   # inputs has shape [batch, 224, 224, 3]
   with slim.arg_scope(resnet_v2.resnet_arg_scope(is_training)):
      net, end_points = resnet_v2.resnet_v2_101(inputs, 1000)
ResNet-101 for semantic segmentation into 21 classes:
   # inputs has shape [batch, 513, 513, 3]
   with slim.arg_scope(resnet_v2.resnet_arg_scope(is_training)):
      net, end_points = resnet_v2.resnet_v2_101(inputs,
                                                21,
                                                global_pool=False,
                                                output_stride=16)
"""
import collections
import tensorflow as tf
slim = tf.contrib.slim
 
 
#namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,
#并可以用属性而不是索引来引用tuple的某个元素
#相当于创建了一个Block类,有scope,unit_fn,args属性
class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])):
  """A named tuple describing a ResNet block.
  Its parts are:
    scope: The scope of the `Block`.
    unit_fn: The ResNet unit function which takes as input a `Tensor` and
      returns another `Tensor` with the output of the ResNet unit.
    args: A list of length equal to the number of units in the `Block`. The list
      contains one (depth, depth_bottleneck, stride) tuple for each unit in the
      block to serve as argument to unit_fn.
  """
 
 
def subsample(inputs, factor, scope=None):
  """Subsamples the input along the spatial dimensions.
  Args:
    inputs: A `Tensor` of size [batch, height_in, width_in, channels].
    factor: The subsampling factor.
    scope: Optional variable_scope.
  Returns:
    output: A `Tensor` of size [batch, height_out, width_out, channels] with the
      input, either intact (if factor == 1) or subsampled (if factor > 1).
  """
  if factor == 1:
    return inputs
  else:
    return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)
 
 
def conv2d_same(inputs, num_outputs, kernel_size, stride, scope=None):
  """Strided 2-D convolution with 'SAME' padding.
  When stride > 1, then we do explicit zero-padding, followed by conv2d with
  'VALID' padding.
  Note that
     net = conv2d_same(inputs, num_outputs, 3, stride=stride)
  is equivalent to
     net = slim.conv2d(inputs, num_outputs, 3, stride=1, padding='SAME')
     net = subsample(net, factor=stride)
  whereas
     net = slim.conv2d(inputs, num_outputs, 3, stride=stride, padding='SAME')
  is different when the input's height or width is even, which is why we add the
  current function. For more details, see ResnetUtilsTest.testConv2DSameEven().
  Args:
    inputs: A 4-D tensor of size [batch, height_in, width_in, channels].
    num_outputs: An integer, the number of output filters.
    kernel_size: An int with the kernel_size of the filters.
    stride: An integer, the output stride.
    rate: An integer, rate for atrous convolution.
    scope: Scope.
  Returns:
    output: A 4-D tensor of size [batch, height_out, width_out, channels] with
      the convolution output.
  """
  #conv2d_same是一个卷积后输入和输出图片大小相同的函数
  #步长为1可以直接卷积,不为1,需要计算在图片周围padding的大小再卷积
  if stride == 1:
    return slim.conv2d(inputs, num_outputs, kernel_size, stride=1,
                       padding='SAME', scope=scope)
  else:
    #kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
    pad_total = kernel_size - 1
    pad_beg = pad_total // 2
    pad_end = pad_total - pad_beg
    inputs = tf.pad(inputs,
                    [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
    return slim.conv2d(inputs, num_outputs, kernel_size, stride=stride,
                       padding='VALID', scope=scope)
 
 
@slim.add_arg_scope
def stack_blocks_dense(net, blocks,
                       outputs_collections=None):
  """Stacks ResNet `Blocks` and controls output feature density.
  First, this function creates scopes for the ResNet in the form of
  'block_name/unit_1', 'block_name/unit_2', etc.
  Args:
    net: A `Tensor` of size [batch, height, width, channels].
    blocks: A list of length equal to the number of ResNet `Blocks`. Each
      element is a ResNet `Block` object describing the units in the `Block`.
    outputs_collections: Collection to add the ResNet block outputs.
  Returns:
    net: Output tensor 
  """
  #生成残差网络所有的堆叠,并存放在net中
  for block in blocks:
    with tf.variable_scope(block.scope, 'block', [net]) as sc:
      for i, unit in enumerate(block.args):
 
        with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
          unit_depth, unit_depth_bottleneck, unit_stride = unit
          net = block.unit_fn(net,
                              depth=unit_depth,
                              depth_bottleneck=unit_depth_bottleneck,
                              stride=unit_stride)
      net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
      
  return net
 
 
def resnet_arg_scope(is_training=True,
                     weight_decay=0.0001,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):
  """Defines the default ResNet arg scope.
  TODO(gpapan): The batch-normalization related default values above are
    appropriate for use in conjunction with the reference ResNet models
    released at https://github.com/KaimingHe/deep-residual-networks. When
    training ResNets from scratch, they might need to be tuned.
  Args:
    is_training: Whether or not we are training the parameters in the batch
      normalization layers of the model.
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_decay: The moving average decay when estimating layer activation
      statistics in batch normalization.
    batch_norm_epsilon: Small constant to prevent division by zero when
      normalizing activations by their variance in batch normalization.
    batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
      activations in the batch normalization layer.
  Returns:
    An `arg_scope` to use for the resnet models.
  """
  batch_norm_params = {
      'is_training': is_training,
      'decay': batch_norm_decay,
      'epsilon': batch_norm_epsilon,
      'scale': batch_norm_scale,
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
  }
 
  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=slim.variance_scaling_initializer(),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
      # The following implies padding='SAME' for pool1, which makes feature
      # alignment easier for dense prediction tasks. This is also used in
      # https://github.com/facebook/fb.resnet.torch. However the accompanying
      # code of 'Deep Residual Learning for Image Recognition' uses
      # padding='VALID' for pool1. You can switch to that choice by setting
      # slim.arg_scope([slim.max_pool2d], padding='VALID').
      with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
        return arg_sc
 
 
 
 
@slim.add_arg_scope
def bottleneck(inputs, depth, depth_bottleneck, stride,
               outputs_collections=None, scope=None):
  """Bottleneck residual unit variant with BN before convolutions.
  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.
  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.
  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.
  Returns:
    The ResNet unit's output.
  """
  with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
    if depth == depth_in:
      shortcut = subsample(inputs, stride, 'shortcut')
    else:
      shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                             normalizer_fn=None, activation_fn=None,
                             scope='shortcut')
 
    residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = conv2d_same(residual, depth_bottleneck, 3, stride,
                                        scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           normalizer_fn=None, activation_fn=None,
                           scope='conv3')
 
    output = shortcut + residual
 
    return slim.utils.collect_named_outputs(outputs_collections,
                                            sc.name,
                                            output)
 
 
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              global_pool=True,
              include_root_block=True,
              reuse=None,
              scope=None):
  """Generator for v2 (preactivation) ResNet models.
  This function generates a family of ResNet v2 models. See the resnet_v2_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.
  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it. If excluded, `inputs` should be the
      results of an activation-less convolution.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.
  Raises:
    ValueError: If the target output_stride is not valid.
  """
  with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
    end_points_collection = sc.original_name_scope + '_end_points'
    with slim.arg_scope([slim.conv2d, bottleneck,
                         stack_blocks_dense],
                        outputs_collections=end_points_collection):
      net = inputs
      if include_root_block:
        # We do not include batch normalization or activation functions in conv1
        # because the first ResNet unit will perform these. Cf. Appendix of [2].
        with slim.arg_scope([slim.conv2d],
                            activation_fn=None, normalizer_fn=None):
          net = conv2d_same(net, 64, 7, stride=2, scope='conv1')
        net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
      net = stack_blocks_dense(net, blocks)
      # This is needed because the pre-activation variant does not have batch
      # normalization or activation functions in the residual unit output. See
      # Appendix of [2].
      net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm')
      if global_pool:
        # Global average pooling.
        net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
      if num_classes is not None:
        net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                          normalizer_fn=None, scope='logits')
      # Convert end_points_collection into a dictionary of end_points.
      end_points = slim.utils.convert_collection_to_dict(end_points_collection)
      if num_classes is not None:
        end_points['predictions'] = slim.softmax(net, scope='predictions')
      return net, end_points
 
 
 
def resnet_v2_50(inputs,
                 num_classes=None,
                 global_pool=True,
                 reuse=None,
                 scope='resnet_v2_50'):
  """ResNet-50 model of [1]. See resnet_v2() for arg and return description."""
  blocks = [
      Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
      Block(
          'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
      Block(
          'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]),
      Block(
          'block4', bottleneck, [(2048, 512, 1)] * 3)]
  return resnet_v2(inputs, blocks, num_classes, global_pool,
                   include_root_block=True, reuse=reuse, scope=scope)
 
 
def resnet_v2_101(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_101'):
  """ResNet-101 model of [1]. See resnet_v2() for arg and return description."""
  blocks = [
      Block(
          'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
      Block(
          'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
      Block(
          'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]),
      Block(
          'block4', bottleneck, [(2048, 512, 1)] * 3)]
  return resnet_v2(inputs, blocks, num_classes, global_pool,
                   include_root_block=True, reuse=reuse, scope=scope)
 
 
def resnet_v2_152(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_152'):
  """ResNet-152 model of [1]. See resnet_v2() for arg and return description."""
  blocks = [
      Block(
          'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
      Block(
          'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]),
      Block(
          'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
      Block(
          'block4', bottleneck, [(2048, 512, 1)] * 3)]
  return resnet_v2(inputs, blocks, num_classes, global_pool,
                   include_root_block=True, reuse=reuse, scope=scope)
 
 
def resnet_v2_200(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_200'):
  """ResNet-200 model of [2]. See resnet_v2() for arg and return description."""
  blocks = [
      Block(
          'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
      Block(
          'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]),
      Block(
          'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
      Block(
          'block4', bottleneck, [(2048, 512, 1)] * 3)]
  return resnet_v2(inputs, blocks, num_classes, global_pool,
                   include_root_block=True, reuse=reuse, scope=scope)
 
  
from datetime import datetime
import math
import time
def time_tensorflow_run(session, target, info_string):
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in range(num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time() - start_time
        if i >= num_steps_burn_in:
            if not i % 10:
                print ('%s: step %d, duration = %.3f' %
                       (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / num_batches
    vr = total_duration_squared / num_batches - mn * mn
    sd = math.sqrt(vr)
    print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
           (datetime.now(), info_string, num_batches, mn, sd))
    
batch_size = 32
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
with slim.arg_scope(resnet_arg_scope(is_training=False)):
   net, end_points = resnet_v2_152(inputs, 1000)
  
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)  
num_batches=100
time_tensorflow_run(sess, net, "Forward") 
 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值