classSR论文阅读笔记

该文章介绍了一种CVPR2021的论文,其创新点在于使用一个分类模块对图像patch进行简单、中等、困难的分级,并据此采用不同复杂度的超分辨率网络进行重建。训练策略包括先训练超分辨率模块,然后联合分类模块进行训练。尽管实验结果显示分类对最终超分辨率结果的影响有限,但该方法在计算效率(FLOPs)方面有所提升,避免了所有patch都通过最复杂网络处理。

在这里插入图片描述

这是CVPR2021的一篇文章,核心思想是利用一个分类模块将patch划分为简单中等困难三个等级并对其进行分别的超分辨率重建,对难的patch用更深更复杂的网络,简单的patch用更浅更简单的网络。

  • 分类模块采取的损失是经典的两种基于熵的无监督分类损失:Class-Loss 和 Average-Loss, Class-Loss使得单次预测的分类更加趋向于one-hot,也就是说具有更高的置信度和更低的熵;Average-Loss使得多次预测的均值更加的分散,多个类别都有所涉及,也就是说平均起来具有更高的熵。这两个损失的结合是很常见的无监督分类损失。
    在这里插入图片描述
    在这里插入图片描述

  • 训练策略是先用Image-Loss单独训练SR模块,然后fix SR模块,串联起来,用三个损失训练分类模块。训练的时候,每张图片仍然是要通过全部的三个SR模块的,但是根据分类值的输出对这些SR模块的输出结果进行加权平均,对加权平均的结果计算图像超分辨率损失,而测试则只选取最高概率值的那一个去SR。
    在这里插入图片描述

  • 但其实从实验结果来看好像分类并不带来多少影响:
    在这里插入图片描述
    在这里插入图片描述

  • 总的来看,优势并不在最终SR的结果上,这是可以理解的,毕竟除了分类模块,SR模块用的是现有的,所以不可能超过现有的。参数量也增加了,也是可以理解,毕竟用了多个SR网络和一个分类网络。优势在于FLOPs,因为并不是全部的patch都需要经过最大的那个SR网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值