Cuda、cuDNN的下载、安装、卸载


主机有显卡的可以安装Cuda用GPU加速模型训练

1.安装显卡硬件对应的驱动

可以参考Ubuntu物理机显卡驱动安装的几种方式安装显卡驱动
输入nvidia-smi,查看自己所需要的cuda版本号,我的是12.1
在这里插入图片描述

2.下载对应显卡驱动版本的cuda

打开nvidia官网,点击对应版本链接进入下载界面(我的是12.1,选择12.1的任一版本都可以)
在这里插入图片描述
在这里插入图片描述
将上面生成的命令拷贝下来,先执行第一行命令下载cuda:

wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run

3.cuda的安装

下载完成后执行chmod 777 【下载的sh文件】赋予执行权限,然后执行第二行命令安装cuda:

sudo sh cuda_12.1.0_530.30.02_linux.run

(1)遇到如下界面,选择continue继续
在这里插入图片描述
(2)遇到如下界面,输入accept
在这里插入图片描述
(3)遇到如下界面,按Enter键取消勾选驱动(显卡驱动已经安装过了),点击install安装其他组件
在这里插入图片描述
安装完成后显示如下路径
在这里插入图片描述
同时系统会在安装目录下自动生成一个/cuda的链接指向/cuda-版本号
在这里插入图片描述

4.cuda的环境变量配置

4.1 输入sudo vi ~/.bashrc命令修改环境变量
根据自己anaconda3的路径名,在文件末尾加入以下四行:

export PATH="/anaconda3的路径名/anaconda3/bin:$PATH"
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/extras/CPUTI/lib64
export CUDA_HOME=/usr/local/cuda/bin
export PATH=$PATH:$LD_LIBRARY_PATH:$CUDA_HOME

在这里插入图片描述

4.2 输入source ~/.bashrc命令激活刚刚修改的内容
4.3 依次输入以下命令,测试cuda是否安装成功

nvcc -V
cd /usr/local/cuda/extras/demo_suite/
./bandwidthTest

在这里插入图片描述
出现Result = PASS即为成功

5.cuda的卸载

5.1 进入到cuda的安装目录,找到有关unintall的文件,执行卸载命令:sudo /usr/local/cuda-12.1/bin/cuda-uninstaller
在这里插入图片描述
5.2 勾选要卸载的cuda版本所有组件
在这里插入图片描述
5.3 卸载成功后,删除相关文件
在这里插入图片描述
5.4 删除相关环境变量
输入sudo vi ~/.bashrc将最下面和cuda有关的删除,执行source ~/.bashrc重新激活环境变量配置即可

6.以tar方式下载、安装、卸载cudnn

(1)下载对应cuda版本的cuDNN

打开nvidia官网,点击对应版本链接进入下载界面(我的cuda版本是12.1,选择12.x的任一版本的cuDNN都可以,推荐使用tar包的方式),下载需要注册登陆英伟达账户(自行百度)
在这里插入图片描述
(2)将下载好的文件拷贝到Ubuntu系统中,并执行以下解压缩命令:

unxz cudnn-linux-x86_64-8.9.0.131_cuda12-archive.tar.xz
tar -vxf cudnn-linux-x86_64-8.9.0.131_cuda12-archive.tar

在这里插入图片描述

(3)cuDNN的安装
进入解压后的目录中,打开终端,输入下述命令:

sudo cp include/cudnn*.h /usr/local/cuda/include/
sudo cp lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

(4)执行完毕后,输入以下命令验证cuDNN是否安装成功:

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述
提示信息是指:在这个文件中不能使用 ​constexpr​ 关键字,因为这个文件是仅限于C语言的。
(5)cuDNN的卸载
通过tar包安装的cudnn,通过以下命令将拷贝到cuda安装目录的有关cudnn的文件删除即可:

sudo rm -rf /usr/local/cuda/include/cudnn.h
sudo rm -rf /usr/local/cuda/lib64/libcudnn*

7.以deb方式下载、安装、卸载cudnn

(1)先切换到/usr/local目录下,然后创建一个目录CuDNN

cd /usr/local
mkdir CuDNN
cd CuDNN

(2)前往https://developer.nvidia.com/rdp/cudnn-archive下载所需文件
在这里插入图片描述
(3)将下载文件拷贝到/usr/local/CuDNN/目录下
在这里插入图片描述
运行以下命令安装CUDNN7.4.2,这里安装顺序一定要如下所示:

sudo dpkg -i libcudnn7_7.4.2.24-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.4.2.24-1+cuda10.0_amd64.deb 
sudo dpkg -i libcudnn7-doc_7.4.2.24-1+cuda10.0_amd64.deb

(4)把文件复制到/usr/local/cuda/include文件夹下面,并修改权限:

sudo cp /usr/include/cudnn.h /usr/local/cuda/include 
sudo chmod a+x /usr/local/cuda/include/cudnn.h

(5)检测是否安装成功的测试命令:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述
(6)卸载以deb方式安装的cudnn

#查询已安装的cudnn
sudo dpkg -l | grep cudnn
#删除拷贝的文件
rm -rf /usr/local/cuda/include/cudnn.h
#卸载安装的cudnn,注意卸载和安装顺序相反
sudo dpkg -r libcudnn7-doc
sudo dpkg -r libcudnn7-dev
sudo dpkg -r libcudnn7
#再次查询已安装的cudnn,没有任何输出即卸载成功。
sudo dpkg -l | grep cudnn
### 卸载并重新安装 cuDNN 的方法 对于在 Ubuntu 20.04 上遇到的 cuDNN 安装问题,可以按照以下方式来解决: #### 卸载现有的 cuDNN 库 为了确保旧版本不会影响新版本的功能,在卸载现有库时应彻底清理残留文件。可以通过命令行执行如下操作: ```bash sudo apt-get remove --purge libcudnn* ``` 这条指令会移除所有与 cuDNN 相关的包及其配置文件[^1]。 #### 清理残留文件 进一步确认是否有任何遗留文件未被删除,特别是 `/usr/local/cuda` 下的相关路径中的 `.so` 文件。如果存在这些文件,则手动将其删除: ```bash rm -rf /usr/local/cuda/include/cudnn*.h rm -rf /usr/local/cuda/lib64/*cudnn* ``` #### 更新环境变量 (可选) 如果有设置过 CUDA 或者 cuDNN 特定版本的环境变量,现在应该更新或者清除它们以防止冲突发生。编辑 `~/.bashrc` 文件取消之前关于 cuDNN 路径的定义,并刷新该脚本使更改生效: ```bash source ~/.bashrc ``` #### 获取最新版 cuDNN 并解压到指定位置 前往 NVIDIA 官方网站下载适用于当前已安装 CUDA 版本对应的 cuDNN 压缩包。假设已经选择了正确的 tarball 格式的压缩包,那么可以直接通过终端进行解压至默认目录(通常是 `/usr/local/cuda`),例如: ```bash tar -xzvf cudnn-linux-x86_64-8.x.x.x_cudaX.Y-archive.tar.xz -C /usr/local/ ``` 这里需要注意的是 X 和 Y 需要替换为实际使用的 CUDA 大小写版本号[^3]。 #### 设置权限和链接 为了让系统能够识别新的库文件,还需要调整其访问权限并向标准搜索路径添加软连接: ```bash chmod a+r /usr/local/cuda/include/cudnn*.h cd /usr/local/cuda/lib64 ln -sf libcudnn.so.X.Y.Z libcudnn.so ln -sf libcudnn.so.X.Y.Z libcudnn.so.X ln -sf libcudnn.so.X.Y.Z libcudnn.so.X.Y ``` 其中 X, Y, Z 表示具体的次版本编号,请依据实际情况修改上述命令[^2]。 完成以上步骤之后重启计机让所有的改动正式生效即可正常使用新版 cuDNN 进行开发工作了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凡间晨光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值