吴恩达机器学习视频课笔记【第6-7章】

本文介绍了逻辑回归在处理二分类问题中的应用,包括sigmoid函数、决策界限、代价函数的简化以及梯度下降法。讨论了过拟合问题,提出了正则化作为解决方案,详细阐述了正则化在线性回归和逻辑回归中的实现,并探讨了λ的选择及其对模型的影响。此外,还提及了多元分类的处理方法和优化算法的选择。
摘要由CSDN通过智能技术生成

目录

6 分类问题(classification)

1、logistic regression / sigmoid函数

2、决策界限

3、代价函数

4、简化代价函数

5、简化梯度下降

6、高级优化

7 过度拟合问题及正则化

1、什么是过拟合

2、处理过拟合问题的方法

3、代价函数

4、λ的选择

5、线性回归的正则化

①梯度下降

②正规方程

6、逻辑回归的正则化

代价函数

梯度下降

高级优化


6 分类问题(classification)

classification:y = 0 or y = 1

hθ(x) can be > 1 or < 0 (线性回归不太合适)

1、logistic regression / sigmoid函数

logistic regression :0 <= hθ(x) <= 1 (考虑逻辑回归---一种分类算法,用在标签y离散的情况下)

也称为sigmoid函数

θTx >= 0,g(θTx) >= 0.5,则 y = 1

否则,y = 0

2、决策界限

可以是线性,也可以是非线性

线性

非线性

3、代价函数

想要找到一个代价函数,其图像为凸函数,而不是非凸函数

logistic regression的代价函数

y = 1时,代价函数为 -log(hθ(x))

y = 0时,代价函数为-log(1-hθ(x))

4、简化代价函数

使得代价函数更紧凑,而不是用分段函数表示

5、简化梯度下降

发现logistic regression和linear regression对θ求偏导的表达式一样,但假设不一样

6、高级优化

优化算法

exitFlag = 1表示以收

 

在线性回归和logistic regression中选择合适的算法

7、多元分类

可以化为二分类,设置多个逻辑回归分类器

​ 单独拎出一个类(作为正类别),其他所有类别看做一个类(作为负类别)

有n个不同的类,则需设置n个分类器

7 过度拟合问题及正则化

1、什么是过拟合

过拟合(overfitting)、高方差(high variance)

变量太多,得到的假设函数能很好的匹配训练集,但对新样本来说,泛化能力不好。

2、处理过拟合问题的方法

(1)减少变量(特征)

​ ①手动选择保留哪些变量

​ ②模型选择算法

(2)正则化(regularization)

​ 保留所有的特征变量,但是减少量级 (变量较多,且对预测y都或多或少起作用)

3、代价函数

正则化后的代价函数:

在原基础上,保证参数|θ|尽可能小,所以确定的代价函数 J(θ) 为:

4、λ的选择

λ正则化参数

要使得J(θ)尽可能小,两项都得小;

后一项为惩罚项,一般来说从θ1开始,不包括θ0;

得到的曲线会更平滑(紫红色),避免过拟合(蓝色线条);

λ太大 ---> 欠拟合

对参数的惩罚力度太大,最后所有的参数都会接近于0,只剩下θ0,相当于用一条直线去拟合(欠拟合,不可行,×)

5、线性回归的正则化

拟合线性回归模型的两种算法:梯度下降正规方程

①梯度下降

在使用梯度下降确定参数时,θj的更新有一些变化(除了θ0)

②正规方程

在原正规方程的基础上要添加一项

补充:(XTX)不可逆的情况

原因:可能是因为样本比特征少,造成(XTX)不可逆

在Octave中使用pinv()函数--->伪逆矩阵

Don't worry!!!

因为加上了λ*矩阵(看图),得到的这个矩阵一定可逆!不会出现不可逆的情况!

6、逻辑回归的正则化

代价函数

(加入正则化参数):

梯度下降

梯度下降法,更新θ

和线性回归梯度下降公式一样,但是注意!!!hθ(x)不一样

高级优化

fminunc(@costFunction , initialTheta , options)

道阻且长,继续加油!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值