清风数学建模--一元线性回归

一元线性回归模型

假 设 x 是 自 变 量 , y 是 因 变 量 , 且 满 足 如 下 线 性 关 系 y i = β 0 + β 1 x i + μ i β 0 和 β 1 为 回 归 系 数 , μ i 为 无 法 观 测 地 且 满 足 一 定 条 件 地 扰 动 项 令 预 测 值 y i ^ = β 0 ^ + β i ^ x i 其 中 β 0 ^ , β 1 ^ = arg min ⁡ ( ∑ i = 1 n ( y i − y i ^ ) 2 ) = arg min ⁡ ( ∑ i = 1 n ( y i − β 0 ^ − β i ^ x i ) 2 ) β 0 ^ , β 1 ^ = arg min ⁡ ( ∑ i = 1 n ( m u i ^ ) 2 ) 我 们 称 μ i ^ = y i − β 0 ^ − β i ^ x i 为 残 差 假设x是自变量,y是因变量,且满足如下线性关系\\y_i=\beta_0+\beta_1x_i+\mu_i\\\beta_0和\beta_1为回归系数,\mu_i为无法观测地且满足一定条件地扰动项\\令预测值\hat{y_i}=\hat{\beta_0}+\hat{\beta_i}x_i\\其中\hat{\beta_0},\hat{\beta_1}=\argmin(\sum_{i=1}^n(y_i-\hat{y_i})^2)=\argmin(\sum_{i=1}^n(y_i-\hat{\beta_0}-\hat{\beta_i}x_i)^2)\\\hat{\beta_0},\hat{\beta_1}=\argmin(\sum_{i=1}^n(\hat{mu_i})^2)\\我们称\hat{\mu_i}=y_i-\hat{\beta_0}-\hat{\beta_i}xi为残差 xy线yi=β0+β1xi+μiβ0β1μiyi^=β0^+βi^xiβ0^,β1^=argmin(i=1n(yiyi^)2)=argmin(i=1n(yiβ0^βi^xi)2)β0^,β1^=argmin(i=1n(mui^)2)μi^=yiβ0^βi^xi

对于线性地理解

假 设 x 是 自 变 量 , y 是 因 变 量 , 且 满 足 如 下 线 性 关 系 : y i = β 0 + β 1 x i + μ i 假设x是自变量,y是因变量,且满足如下线性关系:\\y_i=\beta_0+\beta_1x_i+\mu_i xy线:yi=β0+β1xi+μi

线 性 假 定 并 不 要 求 初 始 模 型 都 呈 上 述 地 严 格 线 性 关 系 , 自 变 量 与 因 变 量 可 以 通 过 变 量 变 换 儿 转 化 称 线 性 模 型 线性假定并不要求初始模型都呈上述地严格线性关系,\\自变量与因变量可以通过变量变换儿转化称线性模型 线线,线
在这里插入图片描述

回归系数地解释

在这里插入图片描述
从图中可以看出,由于多加入了一个变量 x 2 x_2 x2导致 x 1 x_1 x1前面的系数变化很大,而这是由内生性导致的。

内生性

假 设 我 们 的 模 型 为 : Y = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β k x k + μ μ 为 无 法 观 测 满 足 的 且 满 足 一 定 条 件 的 扰 动 项 如 果 满 足 误 差 项 m u 和 所 有 的 自 变 量 x 均 不 相 关 , 测 称 该 回 归 模 型 具 有 外 生 性 ( 如 果 相 关 , 则 存 在 内 生 性 , 内 生 性 会 导 致 回 归 系 数 估 计 不 准 确 , 不 满 足 无 偏 和 一 致 性 ) 假设我们的模型为:Y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_kx_k+\mu\\ \mu为无法观测满足的且满足一定条件的扰动项\\如果满足误差项\\mu和所有的自变量x均不相关,测称该回归模型具有外生性\\(如果相关,则存在内生性,内生性会导致回归系数估计不准确,不满足无偏和一致性) Y=β0+β1x1+β2x2++βkxk+μμmux

回 到 刚 才 的 例 子 中 : 误 差 项 μ i 包 含 了 什 么 回到刚才的例子中:误差项\mu_i包含了什么 :μi

包含了多有与 y y y相关,但未添加到回归模型中的变量,而如果这些变量和我们已经添加的自变量相关,则存在内生性

核心解释变量和控制变量

 因为五内生性要求所有的解释变量均与扰动项不相关。而这个假定通常太强了,因为解释变量一般很多,且需要保证它们全部外生。
 而我们可以通过将解释变量分为核心解释变量与控制变量两类
核心解释变量:我们最感兴趣的变量,因此我们特别希望的到对其系数一致估计(当样本容量无限增大时,收敛于待估计参数的真值)。
控制变量:我们可能对于这些变量并无太大的兴趣;而之所以把它们也放入回归方程,主要是为了“控制住”那些对被解释变量有影响的遗漏因素。
在实际应用中,我们只要保证核心解释变量与u不相关即可

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值