超分之SwinIR官方代码解读

一、解读SwinIR模型文件:network_swinir.py

在这里插入图片描述

1. 带有相对为位置偏置的(W-MSA)

在这里插入图片描述

如何在图像中加入W-MSA
Swin Transformer之相对位置编码详解

import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_


class WindowAttention(nn.Module):
    r""" (带有相对位置偏置的基于窗口的多头自注意力(W-MSA))
    Window based multi-head self attention (W-MSA) module with relative position bias.  W-MSA
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels. (输入通道数)
        window_size (tuple[int]): The height and width of the window.  (窗口的尺寸)
        num_heads (int): Number of attention heads. (MSA的头数)
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True (Q、K、V是否需要偏置)
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set ()
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0  (是否使用dropout)
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim  # 180
        self.window_size = window_size  # Wh, Ww:(8, 8)
        self.num_heads = num_heads  # 6
        head_dim = dim // num_heads  # 160//6 = 30
        self.scale = qk_scale or head_dim ** -0.5  # 1/sqrt(30)

        # define a parameter table of relative position bias(定义相对位置偏置的参数表)
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                        num_heads))  # [225, 6]= [(2*8-1) * (2*8-1), 6]

        # get pair-wise relative position index for each token inside the window(获取窗口内每个token的成对相对位置索引)
        coords_h = torch.arange(self.window_size[0])  # (8, )
        coords_w = torch.arange(self.window_size[1])  # (8, )
        # torch.meshgrid(a, b):生成网格,可以用于生成坐标,行数为第一个输入张量的元素个数,列数为第二个输入张量的元素个数
        coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij'))  # (2, Wh, Ww) (2, 8, 8)
        coords_flatten = torch.flatten(coords, 1)  # (2, Wh*Ww) (2, 64)=(2, 8*8)
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None,
                                                       :]  # (2, Wh*Ww, Wh*Ww) (2, 64, 64)= (2, 61, 1) - (2, 1, 64)
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # (Wh*Ww, Wh*Ww, 2)
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)  # 180 ---> 540
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)

        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)  # 截断正太分布
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)  (2145, 64, 180)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape  # 2145, 64, 180
        # (2145, 64, 180) --> (2415, 64, 540) ---> (2145, 64, 3, 6, 30) = (3, 2145, 6, 64, 30) :(3, B_, head, N, head_dim)
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # [2145, 6, 64, 30] make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # [2145, 6, 64, 30] @ [2145, 6, 30, 64] = [2145, 6, 64, 64]

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1],
            -1)  # [64, 64, 6] [Wh*Ww,Wh*Ww,nH]
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [64, 64, 6] --> [6, 64, 64] [nH, Wh*Ww, Wh*Ww]
        attn = attn + relative_position_bias.unsqueeze(0)  # [2145, 6, 64, 30] + [1, 6, 64, 64] = [2145, 6, 64, 30]

        if mask is not None:
            nW = mask.shape[0]  # 2145
            # [1, 2145, 6, 64, 64] + [1, 2145, 1, 64, 64] = [1, 2145, 6, 64, 64]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)  # [1, 2145, 6, 64, 64] --> [2145, 6, 64, 64]
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # [2145, 6, 64, 64] @ [2145, 6, 64, 30] = [2145, 6, 64, 30] --> [2145, 64, 6, 30] --> [2145, 64, 180]
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)  # [2145, 64, 180] --> [2145, 64, 180]
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops


def window_partition(x, window_size):
    """ (将输入张量x按照指定的窗口大小window_size划分成小的窗口。)
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def calculate_mask(x_size):
    # calculate attention mask for SW-MSA
    H, W = x_size
    window_size, shift_size = 8, 0
    img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
    h_slices = (slice(0, window_size),
                slice(-window_size, -shift_size),
                slice(-shift_size, None))
    w_slices = (slice(0, -window_size),
                slice(-window_size, -shift_size),
                slice(-shift_size, None))
    cnt = 0
    for h in h_slices:
        for w in w_slices:
            img_mask[:, h, w, :] = cnt
            cnt += 1

    mask_windows = window_partition(img_mask, window_size)  # nW, window_size, window_size, 1
    mask_windows = mask_windows.view(-1, window_size * window_size)
    attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

    return attn_mask

if __name__ == '__main__':

    attn = WindowAttention(dim=180, window_size=(8, 8), num_heads=6,
                           qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.)
    print(attn)

    x_windows = torch.randn(2145, 64, 180)
    attn_mask = torch.randn(2145, 64, 64)
    attn_windows = attn(x_windows, mask=attn_mask)

    print(attn_windows.shape)


在这里插入图片描述

2. STL(Swin Transformer)

在这里插入图片描述

class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim  # 180
        self.input_resolution = input_resolution  # (64, 64)
        self.num_heads = num_heads  # 6
        self.window_size = window_size  # 8
        self.shift_size = shift_size  # 0
        self.mlp_ratio = mlp_ratio  # 2

        # 如果输入图像的尺寸小于窗口划分的尺寸,那么窗口就是找个输入图像的尺寸
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition(分区) windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        # 根据移位窗口,来决定是否使用mask
        if self.shift_size > 0:
            attn_mask = self.calculate_mask(self.input_resolution)
        else:
            attn_mask = None

        self.register_buffer("attn_mask", attn_mask)

    def calculate_mask(self, x_size):
        # calculate attention mask for SW-MSA
        H, W = x_size
        img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
        # slice(起始位置索引,结束位置索引) :从已有的数组中返回选定的元素(数组单元的截取)  (左开右闭)
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    def forward(self, x, x_size):
        H, W = x_size
        B, L, C = x.shape
        # assert L == H * W, "input feature has wrong size"

        shortcut = x  # [1, 137289, 180]
        x = self.norm1(x)
        x = x.view(B, H, W, C)  # [1, 264, 520, 180]

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows  [1, 264, 520, 180] ---> [2145, 8, 8, 180]
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
        # 根据测试图像形状是否为窗口大小倍数, 使用W-MSA/SW-MSA
        if self.input_resolution == x_size:
            attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, C
        else:
            attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))  # [2145, 64, 180]

        # merge windows  在把窗口拼到一起
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size,
                                         C)  # [2145, 64, 180] --> [2145, 8, 8, 180]
        shifted_x = window_reverse(attn_windows, self.window_size, H,
                                   W)  # B H' W' C  [2145, 8, 8, 180] --> [1, 264, 520, 180]

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN  STL层的前向传播过程
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops

if __name__ == '__main__':

    STL = SwinTransformerBlock(dim=180, input_resolution=(64, 64),
                                 num_heads=6, window_size=8,
                                 shift_size=0,
                                 mlp_ratio=2,
                                 qkv_bias=True, qk_scale=None,
                                 drop=0., attn_drop=0.,
                                 drop_path=0.,
                                 norm_layer=nn.LayerNorm)
    print(STL)

    x = torch.randn(1, 137280, 180)
    x_size = [264, 520]

    out_BasicLayer = STL(x, x_size)
    print(out_BasicLayer.shape)

在这里插入图片描述

3. RSTB(Residual Swin Transformer Block)

在这里插入图片描述


class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.  STL

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):

        super().__init__()
        self.dim = dim  # 180
        self.input_resolution = input_resolution  # [64, 64]
        self.depth = depth  # 6
        self.use_checkpoint = use_checkpoint

        # build blocks 每个STL存储6个STB
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (i % 2 == 0) else window_size // 2,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, x_size):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, x_size)
            else:
                x = blk(x, x_size)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops


class RSTB(nn.Module):
    """Residual Swin Transformer Block (RSTB).

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
        img_size: Input image size.
        patch_size: Patch size.
        resi_connection: The convolutional block before residual connection.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
                 img_size=224, patch_size=4, resi_connection='1conv'):
        super(RSTB, self).__init__()

        self.dim = dim  # 180
        self.input_resolution = input_resolution  # [64, 64]

        # STL
        self.residual_group = BasicLayer(dim=dim,
                                         input_resolution=input_resolution,
                                         depth=depth,
                                         num_heads=num_heads,
                                         window_size=window_size,
                                         mlp_ratio=mlp_ratio,
                                         qkv_bias=qkv_bias, qk_scale=qk_scale,
                                         drop=drop, attn_drop=attn_drop,
                                         drop_path=drop_path,
                                         norm_layer=norm_layer,
                                         downsample=downsample,
                                         use_checkpoint=use_checkpoint)

        if resi_connection == '1conv':
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == '3conv':
            # to save parameters and memory
            self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                      nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
                                      nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                      nn.Conv2d(dim // 4, dim, 3, 1, 1))

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
            norm_layer=None)

        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
            norm_layer=None)

    def forward(self, x, x_size):
        return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x

    def flops(self):
        flops = 0
        flops += self.residual_group.flops()
        H, W = self.input_resolution
        flops += H * W * self.dim * self.dim * 9
        flops += self.patch_embed.flops()
        flops += self.patch_unembed.flops()

        return flops


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        # to_2tuple(): 将输入对象转换为长度为2的元组
        img_size = to_2tuple(img_size)  # 64 ---> (64, 64)
        patch_size = to_2tuple(patch_size)  # 1 ---> (1, 1)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]  # [64//1,64//1] ---> [64, 64]
        self.img_size = img_size  # [64, 64]
        self.patch_size = patch_size  # [1, 1]
        self.patches_resolution = patches_resolution  # [64, 64]
        self.num_patches = patches_resolution[0] * patches_resolution[1]  # 64*64=4096

        self.in_chans = in_chans  # 180
        self.embed_dim = embed_dim  # 180

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C  [b, c, h, w] ---> [b, h*w, c]
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        flops = 0
        H, W = self.img_size
        if self.norm is not None:
            flops += H * W * self.embed_dim
        return flops


class PatchUnEmbed(nn.Module):
    r""" Image to Patch Unembedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

    def forward(self, x, x_size):
        B, HW, C = x.shape
        x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1])  # B Ph*Pw C
        return x

    def flops(self):
        flops = 0
        return flops


if __name__ == '__main__':
    RSTB = RSTB(dim=180,
                input_resolution=(64, 64),
                depth=6,
                num_heads=6,
                window_size=8,
                mlp_ratio=2,
                qkv_bias=True, qk_scale=None,
                drop=0., attn_drop=0.,
                drop_path=[0.0, 0.0028571428265422583, 0.0057142856530845165, 0.008571428246796131,
                           0.011428571306169033, 0.014285714365541935],  # no impact on SR results
                norm_layer=nn.LayerNorm,
                downsample=None,
                use_checkpoint=False,
                img_size=64,
                patch_size=1,
                resi_connection='1conv'
                )
    print(RSTB)
    x = torch.randn(1, 137280, 180)
    x_size = [264, 520]

    out_RSTB =RSTB(x, x_size)
    print(out_RSTB.shape)

在这里插入图片描述

4. SwinIR(主框架网络)

在这里插入图片描述

class SwinIR(nn.Module):
    r""" SwinIR
        A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.

    Args:
        img_size (int | tuple(int)): Input image size. Default 64
        patch_size (int | tuple(int)): Patch size. Default: 1
        in_chans (int): Number of input image channels. Default: 3
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer. (每个STL的深度)
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.Default: 4  (mlp隐藏层维度与嵌入层维度的比率)
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False (是否使用绝对位置嵌入)
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
        upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
        img_range: Image range. 1. or 255.  (输入图像像素值范围:1或者255)
        upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
        resi_connection: The convolutional block before residual connection. '1conv'/'3conv'

        # real sr
        model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
                        img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                        mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
    """

    def __init__(self, img_size=64, patch_size=1, in_chans=3,
                 embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
                 window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
                 **kwargs):
        super(SwinIR, self).__init__()
        num_in_ch = in_chans  # 3
        num_out_ch = in_chans  # 3
        num_feat = 64
        self.img_range = img_range

        # 对图像进行归一化处理
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)  # mean[1, 3, 1, 1]
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale  # 4
        self.upsampler = upsampler  # nearest+conv
        self.window_size = window_size  # 8

        #####################################################################################################
        ################################### 1, shallow feature extraction ###################################
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)  # 3 ---> 96

        #####################################################################################################
        ################################### 2, deep feature extraction ######################################
        self.num_layers = len(depths)  # 6, 默认4
        self.embed_dim = embed_dim  # 180, 默认96
        self.ape = ape  # 默认false
        self.patch_norm = patch_norm  # 默认true
        self.num_features = embed_dim  # 180, 默认96
        self.mlp_ratio = mlp_ratio  # 2, 默认4

        # split image into non-overlapping patches (把图像分割成patches)
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches  # 64*64=4096, 默认264*184= 48576
        patches_resolution = self.patch_embed.patches_resolution  # [64, 64]
        self.patches_resolution = patches_resolution  # [64, 64]

        # merge non-overlapping patches into image (把多个patches在合成一张图像)
        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding  # 使用绝对位置嵌入
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth  随机深度: 从 0 到 drop_path_rate 之间均匀分布的数字序列。
        # torch.linspace(0, 0.1, sum([6, 6, 6, 6, 6, 6])): 生成从0开始到0.1结束的等差数列(公差大约是0.002857),总共有36个元素
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build Residual Swin Transformer blocks (RSTB)
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = RSTB(dim=embed_dim,
                         input_resolution=(patches_resolution[0],
                                           patches_resolution[1]),
                         depth=depths[i_layer],
                         num_heads=num_heads[i_layer],
                         window_size=window_size,
                         mlp_ratio=self.mlp_ratio,
                         qkv_bias=qkv_bias, qk_scale=qk_scale,
                         drop=drop_rate, attn_drop=attn_drop_rate,
                         drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],  # no impact on SR results
                         norm_layer=norm_layer,
                         downsample=None,
                         use_checkpoint=use_checkpoint,
                         img_size=img_size,
                         patch_size=patch_size,
                         resi_connection=resi_connection

                         )
            self.layers.append(layer)
        self.norm = norm_layer(self.num_features)

        # build the last conv layer in deep feature extraction
        if resi_connection == '1conv':
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == '3conv':
            # to save parameters and memory
            self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
                                                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                                 nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
                                                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                                 nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))

        #####################################################################################################
        ################################ 3, high quality image reconstruction ################################
        if self.upsampler == 'pixelshuffle':
            # for classical SR
            self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
                                                      nn.LeakyReLU(inplace=True))
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
        elif self.upsampler == 'pixelshuffledirect':
            # for lightweight SR (to save parameters)
            self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
                                            (patches_resolution[0], patches_resolution[1]))
        elif self.upsampler == 'nearest+conv':
            # for real-world SR (less artifacts)
            self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
                                                      nn.LeakyReLU(inplace=True))
            self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            if self.upscale == 4:
                self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
            self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
        else:
            # for image denoising and JPEG compression artifact reduction
            self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):  # 对于线性层,权重使用截断正态分布初始化,
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:  # 对于含有偏置的线性层,将偏置项 m.bias 初始化为零。
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):  # 对于layerNorm,将权重初始化为1,偏置初始化为0
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
        mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
        return x

    def forward_features(self, x):
        x_size = (x.shape[2], x.shape[3])
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x, x_size)

        x = self.norm(x)  # B L C
        x = self.patch_unembed(x, x_size)

        return x

    def forward(self, x):
        H, W = x.shape[2:]
        x = self.check_image_size(x)

        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == 'pixelshuffle':
            # for classical SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))
        elif self.upsampler == 'pixelshuffledirect':
            # for lightweight SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.upsample(x)
        elif self.upsampler == 'nearest+conv':
            # for real-world SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
            if self.upscale == 4:
                x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
            x = self.conv_last(self.lrelu(self.conv_hr(x)))
        else:
            # for image denoising and JPEG compression artifact reduction
            x_first = self.conv_first(x)
            res = self.conv_after_body(self.forward_features(x_first)) + x_first
            x = x + self.conv_last(res)

        x = x / self.img_range + self.mean

        return x[:, :, :H * self.upscale, :W * self.upscale]

    def flops(self):
        flops = 0
        H, W = self.patches_resolution
        flops += H * W * 3 * self.embed_dim * 9
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += H * W * 3 * self.embed_dim * self.embed_dim
        flops += self.upsample.flops()
        return flops


if __name__ == '__main__':

    SwinIR = SwinIR(upscale=4, in_chans=3, img_size=64, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
    print(SwinIR)

    x = torch.randn(1, 3, 264, 520)
    out_SwinIR = SwinIR(x)
    print(x.shape)

在这里插入图片描述在这里插入图片描述

二、解读SwinIR测试主文件:main_test_swinir.py

import argparse
import cv2
import glob
import numpy as np
from collections import OrderedDict
import os
import torch
import requests

from models.network_swinir import SwinIR as net
from utils import util_calculate_psnr_ssim as util


# 测试:python main_test_swinir.py --task real_sr --scale 4 --model_path model_zoo/swinir/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth --folder_lq testsets/RealSRSet+5images --tile

def main():
    parser = argparse.ArgumentParser()
    # IR中的三种任务
    parser.add_argument('--task', type=str, default='real_sr', help='classical_sr, lightweight_sr, real_sr, '
                                                                     'gray_dn, color_dn, jpeg_car, color_jpeg_car')
    # 缩放尺寸
    parser.add_argument('--scale', type=int, default=4, help='scale factor: 1, 2, 3, 4, 8')  # 1 for dn and jpeg car
    # 添加噪声的程度
    parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
    # jpeg压缩程度
    parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40')
    # 训练的patch尺寸
    parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training SwinIR. '
                                                                             'Just used to differentiate two different settings in Table 2 of the paper. '
                                                                             'Images are NOT tested patch by patch.')
    # 是否使用real image sr的大模型
    parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
    # 训练好的模型路径
    parser.add_argument('--model_path', type=str,
                        default='model_zoo/swinir/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth')
    # 测试的LQ图像文件路径
    parser.add_argument('--folder_lq', type=str, default='testsets/RealSRSet+5images', help='input low-quality test image folder')
    parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
    # 测试时,是否将图像分成多个小块进行测试。(超出显存时,使用)
    parser.add_argument('--tile', type=int, default=None,
                        help='Tile size, None for no tile during testing (testing as a whole)')
    # 不同小块的重叠区域
    parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
    args = parser.parse_args()

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # set up model  加载训练后的SwinIR模型
    if os.path.exists(args.model_path):
        print(f'loading model from {args.model_path}')
    else:
        os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
        url = 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/{}'.format(
            os.path.basename(args.model_path))
        r = requests.get(url, allow_redirects=True)
        print(f'downloading model {args.model_path}')
        open(args.model_path, 'wb').write(r.content)

    model = define_model(args)  # 根据model.task的选择,设置不同的网络模型
    model.eval()
    model = model.to(device)

    # setup folder: 测试LQ图像的文件路径, save_dir: 保存的HQ文件路径, border: 0, window_size: 8
    folder, save_dir, border, window_size = setup(args)
    os.makedirs(save_dir, exist_ok=True)
    test_results = OrderedDict()  # 按照有序插入顺序存储 的有序字典
    test_results['psnr'] = []
    test_results['ssim'] = []
    test_results['psnr_y'] = []
    test_results['ssim_y'] = []
    test_results['psnrb'] = []
    test_results['psnrb_y'] = []
    psnr, ssim, psnr_y, ssim_y, psnrb, psnrb_y = 0, 0, 0, 0, 0, 0

    # 整个循环会依次处理文件夹 folder 中的每个文件,并对其进行排序。在每次迭代中,idx: 文件在列表中的索引,path: 文件的完整路径。
    # glob.glob(): 函数用于获取匹配指定模式的文件路径列表
    # os.path.join(folder, '*'): 会生成一个匹配指定文件夹下所有文件的模式
    for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
        # read image 获取图像的名字,获取图像[h, w, c],(float32,0-1之间)
        imgname, img_lq, img_gt = get_image_pair(args, path)  # image to HWC-BGR, float32
        # 先把使用CV2获取的图像颜色通道BGR转换成RGB,然后在将图像[h, w, c] ---> [c, h, w]
        img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]],
                              (2, 0, 1))  # HCW-BGR to CHW-RGB
        # ndarry[c, h, w] ---> tensor[1, c, h, w]
        img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device)  # CHW-RGB to NCHW-RGB

        # inference
        with torch.no_grad():
            # pad input image to be a multiple of window_size 将输入图像填充至window_size的倍数
            _, _, h_old, w_old = img_lq.size()  # h_old:256  w_old:512
            h_pad = (h_old // window_size + 1) * window_size - h_old  # 需要填充的高度:8
            w_pad = (w_old // window_size + 1) * window_size - w_old  # 需要填充的宽度:8
            # torch.flip(img_lq, [dim]):对输入的 img_lq 图像进行第dim维度(水平/垂直)方向上的镜像翻转。
            img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]  # 水平镜像填充高度  [1, 3, 256+8, 512] = [1, 3, 264, 512]
            img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]  # 垂直镜像填充宽度  [1, 3, 256+8, 512+8] = [1, 3, 264, 520]

            # 前向传播,得到4倍放大的HR图像
            output = test(img_lq, model, args, window_size)  # [1, 3, 264, 520] --> [1, 3, 264*4, 520*4] = [1, 3, 1056, 2080]
            # 在将填充图像剪裁为原始图像的四倍。
            output = output[..., :h_old * args.scale, :w_old * args.scale]  # 在将图像恢复成原始图像的4倍 [1, 3, 1024, 2048]

        # save image将重建的HR图像[1, 3, 1024, 2048] ---> [3, 1024, 2048], 并将元素值限制在(0,1), 且转为ndarry
        # x.clamp_(0, 1): 将x的元素值限制到(0, 1)(<0的用0代替,>1的用1代替)
        output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()  # [3, 1024, 2048]
        if output.ndim == 3:
            # 先将通道维度RGB---> BGR, 然后在将CHW ---> HWC
            output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))  # CHW-RGB to HCW-BGR
        # 再将元素值由(0,1)的float32---> (0, 255)的uint8
        output = (output * 255.0).round().astype(np.uint8)  # float32 to uint8
        # 最后使用CV2库保存生成图像
        cv2.imwrite(f'{save_dir}/{imgname}_SwinIR.png', output)

        # evaluate psnr/ssim/psnr_b (对于由GT图像的测试任务,则计算其相应的指标)
        if img_gt is not None:
            img_gt = (img_gt * 255.0).round().astype(np.uint8)  # float32 to uint8
            img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...]  # crop gt
            img_gt = np.squeeze(img_gt)

            psnr = util.calculate_psnr(output, img_gt, crop_border=border)
            ssim = util.calculate_ssim(output, img_gt, crop_border=border)
            test_results['psnr'].append(psnr)
            test_results['ssim'].append(ssim)
            if img_gt.ndim == 3:  # RGB image
                psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True)
                ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True)
                test_results['psnr_y'].append(psnr_y)
                test_results['ssim_y'].append(ssim_y)
            if args.task in ['jpeg_car', 'color_jpeg_car']:
                psnrb = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=False)
                test_results['psnrb'].append(psnrb)
                if args.task in ['color_jpeg_car']:
                    psnrb_y = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True)
                    test_results['psnrb_y'].append(psnrb_y)
            print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNRB: {:.2f} dB;'
                  'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; PSNRB_Y: {:.2f} dB.'.
                  format(idx, imgname, psnr, ssim, psnrb, psnr_y, ssim_y, psnrb_y))
        else:
            print('Testing {:d} {:20s}'.format(idx, imgname))

    # summarize psnr/ssim
    if img_gt is not None:
        ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
        ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
        print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
        if img_gt.ndim == 3:
            ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
            ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
            print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
        if args.task in ['jpeg_car', 'color_jpeg_car']:
            ave_psnrb = sum(test_results['psnrb']) / len(test_results['psnrb'])
            print('-- Average PSNRB: {:.2f} dB'.format(ave_psnrb))
            if args.task in ['color_jpeg_car']:
                ave_psnrb_y = sum(test_results['psnrb_y']) / len(test_results['psnrb_y'])
                print('-- Average PSNRB_Y: {:.2f} dB'.format(ave_psnrb_y))


def define_model(args):
    # 001 classical image sr
    if args.task == 'classical_sr':
        model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
        param_key_g = 'params'

    # 002 lightweight image sr
    # use 'pixelshuffledirect' to save parameters
    elif args.task == 'lightweight_sr':
        model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
                    mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
        param_key_g = 'params'

    # 003 real-world image sr
    elif args.task == 'real_sr':
        if not args.large_model:
            # use 'nearest+conv' to avoid block artifacts
            model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
                        img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                        mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
        else:
            # larger model size; use '3conv' to save parameters and memory; use ema for GAN training
            model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
                        img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
                        num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
                        mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
        param_key_g = 'params_ema'

    # 004 grayscale image denoising
    elif args.task == 'gray_dn':
        model = net(upscale=1, in_chans=1, img_size=128, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='', resi_connection='1conv')
        param_key_g = 'params'

    # 005 color image denoising
    elif args.task == 'color_dn':
        model = net(upscale=1, in_chans=3, img_size=128, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='', resi_connection='1conv')
        param_key_g = 'params'

    # 006 grayscale JPEG compression artifact reduction
    # use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
    elif args.task == 'jpeg_car':
        model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
                    img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='', resi_connection='1conv')
        param_key_g = 'params'

    # 006 color JPEG compression artifact reduction
    # use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
    elif args.task == 'color_jpeg_car':
        model = net(upscale=1, in_chans=3, img_size=126, window_size=7,
                    img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='', resi_connection='1conv')
        param_key_g = 'params'

    pretrained_model = torch.load(args.model_path)
    model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model,
                          strict=True)

    return model


def setup(args):
    # 001 classical image sr/ 002 lightweight image sr
    if args.task in ['classical_sr', 'lightweight_sr']:
        save_dir = f'results/swinir_{args.task}_x{args.scale}'
        folder = args.folder_gt
        border = args.scale
        window_size = 8

    # 003 real-world image sr
    elif args.task in ['real_sr']:
        save_dir = f'results/swinir_{args.task}_x{args.scale}'
        if args.large_model:
            save_dir += '_large'
        folder = args.folder_lq
        border = 0
        window_size = 8

    # 004 grayscale image denoising/ 005 color image denoising
    elif args.task in ['gray_dn', 'color_dn']:
        save_dir = f'results/swinir_{args.task}_noise{args.noise}'
        folder = args.folder_gt
        border = 0
        window_size = 8

    # 006 JPEG compression artifact reduction
    elif args.task in ['jpeg_car', 'color_jpeg_car']:
        save_dir = f'results/swinir_{args.task}_jpeg{args.jpeg}'
        folder = args.folder_gt
        border = 0
        window_size = 7

    return folder, save_dir, border, window_size


def get_image_pair(args, path):
    # 用于将文件路径 path 中的文件名和扩展名分离,并将它们分别赋值给 imgname 和 imgext 变量
    (imgname, imgext) = os.path.splitext(os.path.basename(path))

    # 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
    if args.task in ['classical_sr', 'lightweight_sr']:
        img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
        img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
            np.float32) / 255.

    # 003 real-world image sr (load lq image only)
    elif args.task in ['real_sr']:
        img_gt = None

        # 读取路径为 path 的图像文件,并将其转换为浮点型(float32)数组,同时进行归一化处理,范围在0到1之间
        img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.

    # 004 grayscale image denoising (load gt image and generate lq image on-the-fly)
    elif args.task in ['gray_dn']:
        img_gt = cv2.imread(path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.
        np.random.seed(seed=0)
        img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape)
        img_gt = np.expand_dims(img_gt, axis=2)
        img_lq = np.expand_dims(img_lq, axis=2)

    # 005 color image denoising (load gt image and generate lq image on-the-fly)
    elif args.task in ['color_dn']:
        img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
        np.random.seed(seed=0)
        img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape)

    # 006 grayscale JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
    elif args.task in ['jpeg_car']:
        img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED)
        if img_gt.ndim != 2:
            img_gt = util.bgr2ycbcr(img_gt, y_only=True)
        result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
        img_lq = cv2.imdecode(encimg, 0)
        img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
        img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.

    # 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
    elif args.task in ['color_jpeg_car']:
        img_gt = cv2.imread(path)
        result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
        img_lq = cv2.imdecode(encimg, 1)
        img_gt = img_gt.astype(np.float32) / 255.
        img_lq = img_lq.astype(np.float32) / 255.

    return imgname, img_lq, img_gt


def test(img_lq, model, args, window_size):

    # 是否将图像分成多个小块进行测试。(超出显存时,使用)
    if args.tile is None:
        # test the image as a whole
        output = model(img_lq)
    else:
        # test the image tile by tile
        b, c, h, w = img_lq.size()
        tile = min(args.tile, h, w)
        assert tile % window_size == 0, "tile size should be a multiple of window_size"
        tile_overlap = args.tile_overlap
        sf = args.scale

        # 计算每次滑动的步长
        stride = tile - tile_overlap
        # 根据步长和图像高度计算垂直方向上分块的起始索引列表。
        h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
        # 根据步长和图像宽度计算水平方向上分块的起始索引列表。
        w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
        # 创建一个与输入图像相同类型的全零张量 E,用于存储每个分块的测试结果。
        E = torch.zeros(b, c, h * sf, w * sf).type_as(img_lq)
        # 创建一个与 E 相同类型的全零张量 W,用于存储每个分块的权重信息。
        W = torch.zeros_like(E)

        # 循环遍历垂直和水平方向上的分块起始索引。
        for h_idx in h_idx_list:
            for w_idx in w_idx_list:
                # 根据当前分块的起始索引,从输入图像中提取对应的分块。
                in_patch = img_lq[..., h_idx:h_idx + tile, w_idx:w_idx + tile]
                # 对每个块进行前向传播的超分辨率重建
                out_patch = model(in_patch)
                out_patch_mask = torch.ones_like(out_patch)

                # 将当前分块的测试结果和权重信息添加到全局张量 E 和 W 中的相应位置。
                E[..., h_idx * sf:(h_idx + tile) * sf, w_idx * sf:(w_idx + tile) * sf].add_(out_patch)
                W[..., h_idx * sf:(h_idx + tile) * sf, w_idx * sf:(w_idx + tile) * sf].add_(out_patch_mask)
        # 将 E 中的每个分块测试结果除以 W 中的相应权重,得到的结果为所有分块测试结果的加权平均值。
        output = E.div_(W)

    return output


if __name__ == '__main__':
    main()

原图像
在这里插入图片描述
在这里插入图片描述

重建HR图像:
在这里插入图片描述
在这里插入图片描述

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值