ETF与指数的相关性分析

ETF与指数的相关性分析

在金融市场中,指数无法直接交易,这催生了 ETF 基金的诞生。ETF 基金以追踪特定市场指数为目标,其交易价格和基金份额净值的波动趋势与所跟踪指数高度拟合。投资者在买卖 ETF 时,本质上是在间接交易其所跟踪的指数,进而有机会获取与该指数近乎一致的收益回报。

但值得注意的是,市场上基金品类繁多,不同基金所跟踪的指数各异。基金的价格走势与对应指数走势之间的相关性强弱并非固定不变,而是受到多种因素的综合影响,这就需要投资者运用专业知识和分析工具,自行对其相关性进行精准评判和深入分析,以便做出更为明智的投资决策,在复杂多变的市场中把握投资机遇,实现资产的稳健增值。

安装依赖

# 安装 efinance
# !pip install efinance

查看指数与各etf的关联关系

首先,需要核准一下etf与大盘走势的关联关系,由于指数价格和各etf的价格差异较大,需要先进行归一化,这里使用标准差进行归一化。

import efinance as ef
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 8))  # 单位为英寸

def z_score_normalize(data):
    """
    使用标准差进行归一化
    :param data: 数据列表
    :return: 归一化后的数据列表
    """
    data = np.array(data)
    mean = np.mean(data)
    std = np.std(data)
    return (data - mean) / std

sh_code = '上证指数'
df_sh = ef.stock.get_quote_history(sh_code, beg = '20050101')
sh = z_score_normalize(df_sh["开盘"])
date_sh = np.array(df_sh["日期"])
date_sh = [i.replace('-','') for i in date_sh]
plt.plot(date_sh, sh, label = "sh")

shetf_code = '上证综合ETF'
df_shetf = ef.stock.get_quote_history(shetf_code)
shetf = z_score_normalize(df_shetf["开盘"])
date_shetf = np.array(df_shetf["日期"])
date_shetf = [i.replace('-','') for i in date_shetf]
plt.plot(date_shetf, shetf, label = "shetf")

sh50etf_code = "上证50ETF"
df_sh50etf = ef.stock.get_quote_history(sh50etf_code)
sh50etf = z_score_normalize(df_sh50etf["开盘"])
date_sh50etf = np.array(df_sh50etf[
动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场野生动物目标检测数据集 一、基础信息 数据集名称:农场野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

被风吹过的会不会要逝去

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值