学习笔记——概率论与数理统计(第六章)

学习来源:https://www.bilibili.com/video/av36206436/

第六章

6.1 总体与样本

总体:

  • 全体
  • 个体
  • 有限总体/无限总体
  • 总体分布

样本:

  • 抽样
  • 变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)
  • 观测值 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)
  • 简单随机抽样
    1. 同分布
    2. 独立

( x 1 , ⋯   , x n ) (x_1,\cdots,x_n) (x1,,xn)

F ( x 1 , ⋯   , x n ) = F ( x 1 ) × ⋯ × F ( x n ) F(x_1,\cdots,x_n)=F(x_1)\times\cdots\times F(x_n) F(x1,,xn)=F(x1)××F(xn)
P ( X 1 = x 1 , ⋯   , X n = x n ) = P ( X 1 = x 1 ) × ⋯ × P ( X n = x n ) P(X_1=x_1,\cdots,X_n=x_n)=P(X_1=x_1)\times\cdots\times P(X_n=x_n) P(X1=x1,,Xn=xn)=P(X1=x1)××P(Xn=xn)
f ( x 1 , ⋯   , x n ) = f ( x 1 ) × ⋯ × f ( x n ) f(x_1,\cdots,x_n)=f(x_1)\times\cdots\times f(x_n) f(x1,,xn)=f(x1)××f(xn)

6.2.1 统计量的定义

统计量:不含任何未知参数的样本的函数

6.2.2 常用统计量

设样本 ( X 1 , X 2 , ⋯   , X n ) 来自总体 X ,即有 设样本(X_1,X_2,\cdots,X_n)来自总体 X,即有 设样本(X1,X2,,Xn)来自总体X,即有
样本均值: X ‾ = 1 n ∑ i = 1 n X i 样本均值:\displaystyle\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i 样本均值:X=n1i=1nXi
未修正的样本方差: s 0 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 未修正的样本方差:\displaystyle s_0^2=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 未修正的样本方差:s02=n1i=1n(XiX)2
样本方差: s 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 样本方差:\displaystyle s^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 样本方差:s2=n11i=1n(XiX)2
样本标准差: s = s 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 样本标准差:\displaystyle s=\sqrt{s^2}=\sqrt{\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2} 样本标准差:s=s2 =n11i=1n(XiX)2
样本 k 阶原点矩: A k = 1 n ∑ i = 1 n X i k 样本 k 阶原点矩:\displaystyle A_k=\frac{1}{n}\sum\limits_{i=1}^{n}X_i^k 样本k阶原点矩:Ak=n1i=1nXik
样本 k 阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k 样本 k 阶中心矩:\displaystyle B_k=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^k 样本k阶中心矩:Bk=n1i=1n(XiX)k
协方差: S 12 = 1 2 ∑ ( X i − X ‾ ) ( Y i − Y ‾ ) 协方差:\displaystyle S_{12}=\frac{1}{2}\sum(X_i-\overline{X})(Y_i-\overline{Y}) 协方差:S12=21(XiX)(YiY)
相关系数: S 12 S 1 S 2 相关系数:\displaystyle\frac{S_{12}}{S_1S_2} 相关系数:S1S2S12
设总体 X 的均值为 E X = μ ,方差 D X = σ 2 ,样本 ( X 1 , X 2 , ⋯   , X n ) 来自总体 X ,则: 设总体 X 的均值为EX=\mu,方差DX=\sigma^2,样本(X_1,X_2,\cdots, X_n)来自总体 X,则: 设总体X的均值为EX=μ,方差DX=σ2,样本(X1,X2,,Xn)来自总体X,则:

  • E X ‾ = μ E\overline{X}=\mu EX=μ
  • D X ‾ = 1 n σ 2 \displaystyle D\overline{X}=\frac{1}{n}\sigma^2 DX=n1σ2
  • E S 2 = σ 2 ES^2=\sigma^2 ES2=σ2

6.3.1 抽样分布

χ 2 \chi^2 χ2分布

定理: X 1 , X 2 , ⋯   , X n 独立,服从 N ( 0 , 1 ) ,则 ∑ i = 1 n x i 2 ∼ χ 2 ( n ) 定理:X_1,X_2,\cdots,X_n独立,服从N ( 0 , 1 ) ,则\displaystyle\sum\limits_{i=1}^{n}x_i^2\sim\chi^2(n) 定理:X1,X2,,Xn独立,服从N(0,1),则i=1nxi2χ2(n)

χ 2 ( n ) 满足 E X = n , D X = 2 n \chi^2(n)满足E X = n , D X = 2 n χ2(n)满足EX=n,DX=2n

由中心极限定理, X ∼ χ 2 ( n ) , n 充分大时, X − n 2 n ∼ 近似 N ( 0 , 1 ) 由中心极限定理,X\sim\chi^2(n),n充分大时,\displaystyle\frac{X-n}{\sqrt{2n}}\overset{近似}{\sim}N(0,1) 由中心极限定理,Xχ2(n)n充分大时,2n Xn近似N(0,1)

定理: X ∼ χ 2 ( n ) , Y ∼ χ 2 ( m ) , X , Y 独立,则 X + Y ∼ χ 2 ( m + n ) 定理:X\sim\chi^2(n),Y\sim\chi^2(m),X,Y独立,则X+Y\sim\chi^2(m+n) 定理:Xχ2(n),Yχ2(m),X,Y独立,则X+Yχ2(m+n)
推论: X 1 , X 2 , ⋯   , X n 独立, X i ∼ χ 2 ( m i ) ,则 ∑ i = 1 n X i ∼ χ 2 ( ∑ i = 1 n m i ) 推论:X_1,X_2,\cdots,X_n独立,X_i\sim\chi^2(m_i),则\displaystyle\sum\limits_{i=1}^nX_i\sim\chi^2(\sum\limits_{i=1}^nm_i) 推论:X1,X2,,Xn独立,Xiχ2(mi),则i=1nXiχ2(i=1nmi)

上 α 分位数: P ( χ 2 > χ α 2 ( n ) ) = α 上\alpha分位数:P(\chi^2>\chi^2_\alpha(n))=\alpha α分位数:P(χ2>χα2(n))=α

t分布

X ∼ t ( n ) X∼t(n) Xt(n)
n ≥ 30 n\geq30 n30,则与正态分布区别很小

定理: X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) , X , Y 独立,则 X Y n ∼ t ( n ) 定理:X\sim N(0,1),Y\sim\chi^2(n),X , Y独立,则\displaystyle\frac{X}{\sqrt{\cfrac{Y}{n}}}\sim t(n) 定理:XN(0,1),Yχ2(n)X,Y独立,则nY Xt(n)

上 α 分位数: P ( T > t ( n ) ) = α 上\alpha分位数:P(T>t(n))=\alpha α分位数:P(T>t(n))=α

t 1 − α ( n ) = − t α ( n ) t_{1-\alpha}(n)=-t_\alpha(n) t1α(n)=tα(n)

F分布

F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2)
定理: X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) ,则 X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) , Y / n 2 X / n 1 ∼ F ( n 2 , n 1 ) 定理:X\sim\chi^2(n_1),Y\sim\chi^2(n_2),则\displaystyle\frac{X/n_1}{Y/n_2}\sim F(n_1,n_2),\frac{Y/n_2}{X/n_1}\sim F(n_2,n_1) 定理:Xχ2(n1),Yχ2(n2),则Y/n2X/n1F(n1,n2),X/n1Y/n2F(n2,n1)

推论:若 F ∼ F ( n 1 , n 2 ) ,则 1 F ∼ F ( n 2 , n 1 ) 推论:若F\sim F(n_1,n_2),则\displaystyle\frac{1}{F}\sim F(n_2,n_1) 推论:若FF(n1,n2),则F1F(n2,n1)

6.3.2 正态总体下的抽样分布

定理(一个正态总体):
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)
{ X 1 , X 2 , ⋯   , X n } 为样本, \{X_1,X_2,\cdots,X_n\}为样本, {X1,X2,,Xn}为样本,
X ‾ = 1 n ∑ i = 1 n x i , \displaystyle\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}x_i, X=n1i=1nxi
s 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 ,则: s^2=\frac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2,则: s2=n11i=1n(XiX)2,则:

  • X ‾ ∼ N ( μ , σ 2 n ) \displaystyle\overline{X}\sim N(\mu,\frac{\sigma^2}{n}) XN(μ,nσ2)
    X ‾ − μ σ n ∼ N ( 0 , 1 ) \displaystyle\frac{\overline{X}-\mu}{\sigma}\sqrt{n}\sim N(0,1) σXμn N(0,1)
  • ( n − 1 ) s 2 σ 2 = 1 σ 2 ∑ i = 0 n ( X i − X ‾ ) 2 ∼ χ 2 ( n − 1 ) \displaystyle\frac{(n-1)s^2}{\sigma^2}=\frac{1}{\sigma^2}\sum\limits_{i=0}^{n}(X_i-\overline{X})^2\sim\chi^2(n-1) σ2(n1)s2=σ21i=0n(XiX)2χ2(n1)
  • X ‾ 与 X 相互独立 \overline{X}与 X 相互独立 XX相互独立
  • 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \displaystyle\frac{1}{\sigma^2}\sum\limits_{i=1}^n(X_i-\mu)^2\sim\chi^2(n) σ21i=1n(Xiμ)2χ2(n)
  • X ‾ − μ s n ∼ t ( n − 1 ) \displaystyle\frac{\overline{X}-\mu}{s}\sqrt{n}\sim t(n-1) sXμn t(n1)

定理(两个正态总体):
X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) , X∼N(μ_1,σ_1^2),Y∼N(μ_2,σ_2^2), XN(μ1,σ12),YN(μ2,σ22)
{ X 1 , X 2 , ⋯   , X n 1 } , { Y 1 , Y 2 , ⋯   , Y n 2 } 为样本, \{X_1,X_2,\cdots,X_{n_1}\},\{Y_1,Y_2,\cdots,Y_{n_2}\}为样本, {X1,X2,,Xn1},{Y1,Y2,,Yn2}为样本,
X ‾ = 1 n 1 ∑ i = 1 n 1 x i , Y ‾ = 1 n 2 ∑ i = 1 n 2 y i \displaystyle\overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}x_i,\overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}y_i X=n11i=1n1xi,Y=n21i=1n2yi
s 1 2 = 1 n 1 − 1 ∑ i = 1 n 1 ( X i − X ‾ ) 2 , s 2 2 = 1 n 2 − 1 ∑ i = 1 n 2 ( Y i − Y ‾ ) 2 s_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2,s_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(Y_i-\overline{Y})^2 s12=n111i=1n1(XiX)2,s22=n211i=1n2(YiY)2,则:

  • ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) \displaystyle\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}\sim N(0,1) n1σ12+n2σ22 (XY)(μ1μ2)N(0,1)
  • s 1 2 / σ 1 2 s 2 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \displaystyle\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}\sim F(n_1-1,n_2-1) s22/σ22s12/σ12F(n11,n21)
  • σ 1 2 = σ 2 2 = σ 时, T = ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) ( n 1 − 1 ) s 1 2 + ( n 2 − 1 ) s 2 2 n 1 + n 2 − 2 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \sigma_1^2=\sigma_2^2=\sigma时,\displaystyle T=\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\displaystyle\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) σ12=σ22=σ时,T=n1+n22(n11)s12+(n21)s22 n11+n21 (XY)(μ1μ2)t(n1+n22)
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值