学习笔记——概率论与数理统计(第八章)

学习笔记——概率论与数理统计(第八章)

学习来源:https://www.bilibili.com/video/av36206436/

第八章 假设检验

8.1 基本概念

8.1.1 假设检验问题

总体的分布未知:

  • 分布类型未知(非参数假设 → 非参数假设检验) 分布类型未知(非参数假设 \rightarrow非参数假设检验) 分布类型未知(非参数假设非参数假设检验)
  • 参数未知(参数假设 → 参数假设检验) 参数未知(参数假设 \rightarrow参数假设检验) 参数未知(参数假设参数假设检验)

8.1.2 假设检验基本概念

  • 假设(参数假设/非参数假设)
  • 假设检验(检验假设成立与否)(参数假设检验/非参数假设检验)
  • 假设检验问题(显著性假设检验问题 H 0 对 H 1 假设检验问题) 假设检验问题(显著性假设检验问题H_0对H_1假设检验问题) 假设检验问题(显著性假设检验问题H0H1假设检验问题)

8.1.3 假设检验的思想与步骤

思想

构造统计量 ⟹ 在 H 0 成立时 T 的分布已知 构造统计量 \displaystyle\overset{在H_0成立时}{\Longrightarrow}T的分布已知 构造统计量H0成立时T的分布已知
检验法则 ⟺ P ( T ∈ I ) = α (小概率) 检验法则 \Longleftrightarrow P(T\in I)=\alpha(小概率) 检验法则P(TI)=α(小概率)

P ( ( X 1 , ⋯   , X n ) ∈ W ) = α ( H 0 的拒绝域) P((X_1,\cdots,X_n)\in W)=\alpha(H_0的拒绝域) P((X1,,Xn)W)=αH0的拒绝域)
P ( ( X 1 , ⋯   , X n ) ∈ W ‾ ) = 1 − α ( H 0 的接受域) P((X_1,\cdots,X_n)\in \overline{W})=1-\alpha(H_0的接受域) P((X1,,Xn)W)=1αH0的接受域)

步骤

第一步: 提出 H 0 与 H 1 提出H_0与H_1 提出H0H1
第二步: 假定 H 0 成立,取统计量 T ∼ 已知分布 假定H_0成立,取统计量T\sim已知分布 假定H0成立,取统计量T已知分布
第三步: 给 α 找到拒绝域 P ( ( X 1 , ⋯   , X n ) ∈ W ) = α 给\alpha找到拒绝域P((X_1,\cdots,X_n)\in W)=\alpha α找到拒绝域P((X1,,Xn)W)=α
第四步: 由样本 ( x 1 , ⋯   , x n ) 求出 T 的值,若 ( x 1 , ⋯   , x n ) ∈ W ⟹ 拒绝 H 0 ;若 ( x 1 , ⋯   , x n ) ∈ W ‾ ⟹ 接受 H 0 由样本(x_1,\cdots,x_n)求出T的值,若(x_1,\cdots,x_n)\in W\Longrightarrow拒绝H_0;若(x_1,\cdots,x_n)\in \overline{W}\Longrightarrow接受H_0 由样本(x1,,xn)求出T的值,若(x1,,xn)W拒绝H0;若(x1,,xn)W接受H0

8.1.4 两类错误

第一类错误:弃真
P ( 拒绝 H 0 ∣ H 0 为真 ) = α P(拒绝H_0|H_0为真)=\alpha P(拒绝H0H0为真)=α
第二类错误:纳伪
P ( 接受 H 0 ∣ H 0 为假 ) = β P(接受H_0|H_0为假)=\beta P(接受H0H0为假)=β

确保 α 的前提下尽可能减小 β 确保\alpha的前提下尽可能减小\beta 确保α的前提下尽可能减小β

两类错误

8.2 一个正态总体的参数假设检验

8.2.1 μ \mu μ的假设检验

提出假设:
H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 H_0:\mu=\mu_0,H_1:\mu\not=\mu_0 H0:μ=μ0,H1:μ=μ0
H 0 : μ ≤ μ 0 , H 1 : μ > μ 0 H_0:\mu\leq\mu_0,H_1:\mu>\mu_0 H0:μμ0,H1:μ>μ0
H 0 : μ ≥ μ 0 , H 1 : μ < μ 0 H_0:\mu\geq\mu_0,H_1:\mu<\mu_0 H0:μμ0,H1:μ<μ0

U检验法: σ 2 = σ 0 2 已知,检验 H 0 : μ = μ 0 \sigma^2=\sigma_0^2已知,检验H_0:\mu=\mu_0 σ2=σ02已知,检验H0:μ=μ0

(以双侧检验为例)
第一步: H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 第一步:H_0:\mu=\mu_0,H_1:\mu\not=\mu_0 第一步:H0:μ=μ0,H1:μ=μ0

第二步:假定 H 0 成立, X ∼ ( μ 0 , σ 0 2 ) 第二步:假定H_0成立,X\sim(\mu_0,\sigma_0^2) 第二步:假定H0成立,X(μ0,σ02)
取统计量 U = X ‾ − μ σ 0 μ ∼ N ( 0 , 1 ) 取统计量\displaystyle U=\frac{\overline{X}-\mu}{\displaystyle\frac{\sigma_0}{\mu}}\sim N(0,1) 取统计量U=μσ0XμN(0,1)

第三步:给定 α ,由 P { ∣ U ∣ > u α 2 } = α ,查表得 u α 2 第三步:给定\alpha,由\displaystyle P\{|U|>u_{\frac{\alpha}{2}}\}=\alpha,查表得u_{\frac{\alpha}{2}} 第三步:给定α,由P{U>u2α}=α,查表得u2α
拒绝域: W = { ( x 2 , ⋯   , x n ) ∣ ∣ u ∣ > u α 2 } 拒绝域:W=\{(x_2,\cdots,x_n)||u|>u_{\frac{\alpha}{2}}\} 拒绝域:W={(x2,,xn)∣∣u>u2α}

第四步:计算 U 的值 ∣ u ∣ 与 u α 2 比较,下结论——若 ∣ u ∣ > u α 2 ,拒绝 H 0 ;若 ∣ u ∣ < u α 2 ,接受 H 0 ;若 ∣ u ∣ = u α 2 ,为慎重起见,再抽样,再检验。 第四步:计算U的值|u|与u_{\frac{\alpha}{2}}比较,下结论——若 |u|>u_{\frac{\alpha}{2}},拒绝H_0;若|u|<u_{\frac{\alpha}{2}},接受H_0;若|u|=u_{\frac{\alpha}{2}},为慎重起见,再抽样,再检验。 第四步:计算U的值uu2α比较,下结论——u>u2α,拒绝H0;若u<u2α,接受H0;若u=u2α,为慎重起见,再抽样,再检验。

T检验法: σ 2 未知,检验 H 0 : μ ≠ μ 0 \sigma^2未知,检验H_0:\mu\not=\mu_0 σ2未知,检验H0:μ=μ0

.(以双侧检验为例)
第一步:提出 H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 第一步:提出H_0:\mu=\mu_0,H_1:\mu\not=\mu_0 第一步:提出H0:μ=μ0,H1:μ=μ0

第二步:假定 H 0 成立,取 T = X ‾ − μ 0 s n ∼ t ( n − 1 ) 第二步:假定H_0成立,取\displaystyle T=\frac{\overline{X}-\mu_0}{\frac{s}{\displaystyle\sqrt{n}}}\sim t(n-1) 第二步:假定H0成立,取T=n sXμ0t(n1)

第三步:给定 α ,由 P ( ∣ T ∣ > t α 2 ( n − 1 ) ) = α 第三步:给定\alpha,由\displaystyle P(|T|>t_{\frac{\alpha}{2}}(n-1))=\alpha 第三步:给定α,由P(T>t2α(n1))=α
拒绝域 W = { ( x 1 , ⋯   , x n ) ∣ ∣ t ∣ > t α 2 ( n − 1 ) } 拒绝域W=\{(x_1,\cdots,x_n)||t|>t_{\frac{\alpha}{2}}(n-1)\} 拒绝域W={(x1,,xn)∣∣t>t2α(n1)}

第四步:计算 T 的值,与 t α 2 ( n − 1 ) 比较,下结论 第四步:计算T的值,与t_{\frac{\alpha}{2}}(n-1)比较,下结论 第四步:计算T的值,与t2α(n1)比较,下结论
一个正态总体的参数假设检验

8.2.2 σ 2 σ^2 σ2的假设检验

χ 2 检验法: μ = μ 0 已知,检验 σ 2 = σ 0 2 χ^2检验法:\mu=\mu_0已知,检验\sigma^2=\sigma_0^2 χ2检验法:μ=μ0已知,检验σ2=σ02

(以双侧检验为例)
第一步: H 0 : σ 2 = σ 0 2 , H 1 : σ 0 ≠ σ 0 2 第一步:H_0:\sigma^2=\sigma_0^2,H_1:\sigma_0\not=\sigma_0^2 第一步:H0:σ2=σ02,H1:σ0=σ02

第二步:假定 H 0 成立, X ∼ N ( μ 0 , σ 0 2 ) , X 1 , ⋯   , X n 为样本 第二步:假定H_0成立,X\sim N(\mu_0,\sigma_0^2),X_1,\cdots,X_n为样本 第二步:假定H0成立,XN(μ0,σ02)X1,,Xn为样本
取统计量 χ 2 = ∑ i = 1 n ( X i − μ 0 ) 2 σ 0 2 ∼ χ 2 ( n ) 取统计量\displaystyle\chi^2=\frac{\sum\limits_{i=1}^{n}(X_i-\mu_0)^2}{\sigma_0^2}\sim\chi^2(n) 取统计量χ2=σ02i=1n(Xiμ0)2χ2(n)

第三步:给定 α ,由 P ( χ 2 > χ α 2 2 ( n ) = P ( χ 2 > χ 1 − α 2 2 ( n ) ) = α 2 ,查表得 χ α 2 2 ( n ) , χ 1 − α 2 2 ( n ) 拒绝域 W = { χ 2 > χ α 2 2 ( n ) 或 χ 2 < χ 1 − α 2 2 ( n ) } 第三步:给定\alpha,由\displaystyle P(\chi^2>\chi^2_{\frac{\alpha}{2}}(n)=P(\chi^2>\chi^2_{1-\frac{\alpha}{2}}(n))=\frac{\alpha}{2},查表得\chi^2_{\frac{\alpha}{2}}(n),\chi^2_{1-\frac{\alpha}{2}}(n)拒绝域W=\{\chi^2>\chi^2_{\frac{\alpha}{2}}(n)或\chi^2<\chi^2_{1-\frac{\alpha}{2}}(n)\} 第三步:给定α,由P(χ2>χ2α2(n)=P(χ2>χ12α2(n))=2α,查表得χ2α2(n),χ12α2(n)拒绝域W={χ2>χ2α2(n)χ2<χ12α2(n)}

第四步:计算 χ 2 值,比较,下结论 第四步:计算\chi^2值,比较,下结论 第四步:计算χ2值,比较,下结论

χ 2 检验法: μ 未知,检验 σ 2 = σ 0 2 χ^2检验法:\mu未知,检验\sigma^2=\sigma_0^2 χ2检验法:μ未知,检验σ2=σ02

(以双侧检验为例)
第一步: H 0 : σ 2 = σ 0 2 , H 1 : σ 0 ≠ σ 0 2 第一步:H_0:\sigma^2=\sigma_0^2,H_1:\sigma_0\not=\sigma_0^2 第一步:H0:σ2=σ02,H1:σ0=σ02

第二步:假定 H 0 成立, X ∼ N ( μ , σ 0 2 ) , X 1 , ⋯   , X n 为样本 第二步:假定H_0成立,X\sim N(\mu,\sigma_0^2),X_1,\cdots,X_n为样本 第二步:假定H0成立,XN(μ,σ02)X1,,Xn为样本
取统计量 χ 2 = ∑ i = 1 n ( X i − X ‾ ) 2 σ 0 2 ∼ χ 2 ( n − 1 ) 取统计量\displaystyle\chi^2=\frac{\sum\limits_{i=1}^{n}(X_i-\overline{X})^2}{\sigma_0^2}\sim\chi^2(n-1) 取统计量χ2=σ02i=1n(XiX)2χ2(n1)

第三步:给定 α ,由 P ( χ 2 > χ α 2 2 ( n − 1 ) = P ( χ 2 > χ 1 − α 2 2 ( n − 1 ) ) = α 2 ,查表得 χ α 2 2 ( n − 1 ) , χ 1 − α 2 2 ( n − 1 ) 第三步:给定\alpha,由\displaystyle P(\chi^2>\chi^2_{\frac{\alpha}{2}}(n-1)=P(\chi^2>\chi^2_{1-\frac{\alpha}{2}}(n-1))=\frac{\alpha}{2},查表得\chi^2_{\frac{\alpha}{2}}(n-1),\chi^2_{1-\frac{\alpha}{2}}(n-1) 第三步:给定α,由P(χ2>χ2α2(n1)=P(χ2>χ12α2(n1))=2α,查表得χ2α2(n1),χ12α2(n1)
拒绝域 W = { χ 2 > χ α 2 2 ( n − 1 ) 或 χ 2 < χ 1 − α 2 2 ( n − 1 ) } 拒绝域W=\{\chi^2>\chi^2_{\frac{\alpha}{2}}(n-1)或\chi^2<\chi^2_{1-\frac{\alpha}{2}}(n-1)\} 拒绝域W={χ2>χ2α2(n1)χ2<χ12α2(n1)}

第四步:计算 χ 2 值,比较,下结论 第四步:计算\chi^2值,比较,下结论 第四步:计算χ2值,比较,下结论
σ^2的假设检测

8.3 两个正态总体的参数假设检验

X ∼ N ( μ 1 , σ 1 2 ) , X 1 , ⋯   , X n 1 为样本, X ‾ , S 1 2 X∼N(μ_1,σ_1^2), X_1,\cdots,X_{n_1}为样本,\overline{X},S_1^2 XN(μ1,σ12)X1,,Xn1为样本,XS12
Y ∼ N ( μ 2 , σ 2 2 ) ) , Y 1 , ⋯   , Y n 2 为样本, Y ‾ , S 2 2 Y\sim N(\mu_2,\sigma_2^2)),Y_1,\cdots,Y_{n_2}为样本,\overline{Y} ,S_2^2 YN(μ2,σ22))Y1,,Yn2为样本,YS22

8.3.1 均值 μ 1 , μ 2 \mu_1,\mu_2 μ1,μ2差异性检验

假设 H 0 : μ 1 = μ 2 , H 1 : μ 1 ≠ μ 2 假设H_0:\mu_1=\mu_2,H_1:\mu_1\not=\mu_2 假设H0:μ1=μ2,H1:μ1=μ2
假设 H 0 : μ 1 ≤ μ 2 , H 1 : μ 1 ≯ μ 2 假设H_0:\mu_1\leq\mu_2,H_1:\mu_1\not>\mu_2 假设H0:μ1μ2,H1:μ1>μ2
假设 H 0 : μ 1 ≥ μ 2 , H 1 : μ 1 ≮ μ 2 假设H_0:\mu_1\geq\mu_2,H_1:\mu_1\not<\mu_2 假设H0:μ1μ2,H1:μ1<μ2

U检验法: σ 1 2 , σ 2 2 已知,检验 H 0 : μ = μ 0 \sigma_1^2,\sigma_2^2已知,检验H_0:\mu=\mu_0 σ12,σ22已知,检验H0:μ=μ0

(以双边检验为例)
第一步:提出 H 0 : μ 1 = μ 2 , H 1 : μ 1 ≠ μ 2 第一步:提出H_0:\mu_1=\mu_2,H_1:\mu_1\not=\mu_2 第一步:提出H0:μ1=μ2,H1:μ1=μ2

第二步:假定 H 0 成立 第二步:假定H_0成立 第二步:假定H0成立
X ‾ − Y ‾ ∼ N ( μ 1 − μ 2 , σ 1 2 n 1 + σ 2 2 n 2 ) \displaystyle\overline{X}-\overline{Y}\sim N(\mu_1-\mu_2,\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}) XYN(μ1μ2,n1σ12+n2σ22)
⟹ 取 U = X ‾ − Y ‾ − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 = X ‾ − Y ‾ σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) \displaystyle\Longrightarrow取U=\frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}=\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}\sim N(0,1) U=n1σ12+n2σ22 XY(μ1μ2)=n1σ12+n2σ22 XYN(0,1)

第三步:给定 α ,由 P ( ∣ U ∣ > u α 2 ) = α ,查表得 u α 2 拒绝域 W = { ( x 1 , ⋯   , x n 1 ) ( y 1 , ⋯   , y n 2 ) ∣ ∣ u ∣ > u α 2 } 第三步:给定\alpha,由P(|U|>u_{\frac{\alpha}{2}})=\alpha,查表得u_{\frac{\alpha}{2}}拒绝域W=\{(x_1,\cdots,x_{n_1})(y_1,\cdots,y_{n_2})||u|>u_{\frac{\alpha}{2}}\} 第三步:给定α,由P(U>u2α)=α,查表得u2α拒绝域W={(x1,,xn1)(y1,,yn2)∣∣u>u2α}

第四步:计算 ∣ u ∣ , ∣ u ∣ 与 u α 2 比较,下结论 第四步:计算|u|,|u|与u_{\frac{\alpha}{2}}比较,下结论 第四步:计算uuu2α比较,下结论

T检验法: σ 1 2 , σ 2 2 未知, σ 1 2 = σ 2 2 = σ 2 ,检验 H 0 : μ = μ 0 \sigma_1^2,\sigma_2^2未知,\sigma_1^2=\sigma_2^2=\sigma^2,检验H_0:\mu=\mu_0 σ12,σ22未知,σ12=σ22=σ2,检验H0:μ=μ0

(以双边检验为例)
第一步:提出 H 0 : μ 1 = μ 2 , H 1 : μ 1 ≠ μ 2 第一步:提出H_0:\mu_1=\mu_2,H_1:\mu_1\not=\mu_2 第一步:提出H0:μ1=μ2,H1:μ1=μ2

第二步:假定 H 0 成立,取 T = X ‾ − Y ‾ ( n 1 − 1 ) s 1 2 + ( n 2 − 1 ) s 2 2 n 1 + n 2 − 2 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) 第二步:假定H_0成立,取\displaystyle T=\frac{\overline{X}-\overline{Y}}{\displaystyle\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) 第二步:假定H0成立,取T=n1+n22(n11)s12+(n21)s22 n11+n21 XYt(n1+n22)

第三步:给定 α ,由 P ( ∣ T ∣ > t α 2 ) = α ,查表得 t α 2 ( n 1 + n 2 − 2 ) 第三步:给定\alpha,由P(|T|>t_{\frac{\alpha}{2}})=\alpha,查表得t_{\frac{\alpha}{2}}(n_1+n_2-2) 第三步:给定α,由P(T>t2α)=α,查表得t2α(n1+n22)
拒绝域 W = { ( x 1 , ⋯   , x n 1 ) ( y 1 , ⋯   , y n 2 ) ∣ ∣ t ∣ > t α 2 } 拒绝域W=\{(x_1,\cdots,x_{n_1})(y_1,\cdots,y_{n_2})||t|>t_{\frac{\alpha}{2}}\} 拒绝域W={(x1,,xn1)(y1,,yn2)∣∣t>t2α}

第四步:计算 ∣ t ∣ , ∣ t ∣ 与 t α 2 比较,下结论 第四步:计算∣ t ∣,∣ t ∣与t_{\frac{\alpha}{2}}比较,下结论 第四步:计算ttt2α比较,下结论
两个正态总体的参数假设检验

8.3.2方差 σ 1 2 , σ 2 2 \sigma_1^2,\sigma_2^2 σ12,σ22差异性检验

假设 H 0 : σ 1 2 = σ 2 2 , H 1 : σ 1 2 ≠ σ 2 2 假设H_0:\sigma_1^2=\sigma_2^2,H_1:\sigma_1^2\not=\sigma_2^2 假设H0:σ12=σ22,H1:σ12=σ22
假设 H 0 : σ 1 2 ≤ σ 2 2 , H 1 : σ 1 2 > σ 2 2 假设H_0:\sigma_1^2\leq\sigma_2^2,H_1:\sigma_1^2>\sigma_2^2 假设H0:σ12σ22,H1:σ12>σ22
假设 H 0 : σ 1 2 ≥ σ 2 2 , H 1 : σ 1 2 < σ 2 2 假设H_0:\sigma_1^2\geq\sigma_2^2,H_1:\sigma_1^2<\sigma_2^2 假设H0:σ12σ22,H1:σ12<σ22
μ 1 , μ 2 都未知,检验 H 0 : σ 1 2 = σ 2 2 μ_1,μ_2都未知,检验H_0:\sigma_1^2=\sigma_2^2 μ1,μ2都未知,检验H0:σ12=σ22
(以双侧检验为例)
第一步:提出 H 0 : σ 1 2 = σ 2 2 , H 1 : σ 1 2 ≠ σ 2 2 第一步:提出H_0:\sigma_1^2=\sigma_2^2,H_1:\sigma_1^2\not=\sigma_2^2 第一步:提出H0:σ12=σ22,H1:σ12=σ22

第二步:假设 H 0 成立,取 F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 = S 1 2 S 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) 第二步:假设H_0成立,取\displaystyle F=\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}=\frac{S_1^2}{S_2^2}\sim F(n_1-1,n_2-1) 第二步:假设H0成立,取F=S22/σ22S12/σ12=S22S12F(n11,n21)

第三步:给定 α ,由 P ( F > F α 2 ) = P ( F < F 1 − α 2 ) = α 2 第三步:给定\alpha,由P(F>F_{\frac{\alpha}{2}})=P(F<F_{1-\frac{\alpha}{2}})=\frac{\alpha}{2} 第三步:给定α,由P(F>F2α)=P(F<F12α)=2α
(计算时用到公式: F 1 − α 2 ( n 1 − 1 , n 2 − 1 ) = F α 2 ( n 2 − 1 , n 1 − 1 ) (计算时用到公式:F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)=F_{\frac{\alpha}{2}}(n_2-1,n_1-1) (计算时用到公式:F12α(n11,n21)=F2α(n21,n11)
拒绝域 W = { ( x 1 , ⋯   , x n 1 ) ( y 1 , ⋯   , y n 2 ) ∣ f > f α 2 ( n 1 − 1 , n 2 − 1 ) 或 f < f 1 − α 2 ( n 1 − 1 , n 2 − 1 ) } 拒绝域W=\{(x_1,\cdots,x_{n_1})(y_1,\cdots,y_{n_2})|f>f_{\frac{\alpha}{2}}(n_1-1,n_2-1)或f<f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)\} 拒绝域W={(x1,,xn1)(y1,,yn2)f>f2α(n11,n21)f<f12α(n11,n21)}

第四步:计算 F 的值 f,比较,下结论

区间估计——参数未知,利用统计量估计未知的参数
假设检验——参数已知,利用统计量检验已知的参数是否靠谱

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
概率论与数理统计是一门研究随机现象的规律性和统计推断的学科。它的基础是概率论,该理论研究的是随机事件发生的可能性。数理统计则是根据观察到的样本,通过对未知参数的估计和对假设的检验来对总体进行推断。 概率论与数理统计的应用非常广泛,涉及到许多不同的领域。在自然科学中,概率论与数理统计被用来建立和分析模型,解释实验结果,以及进行科学研究。在社会科学和人文科学中,它帮助研究人员通过统计分析来得出结论,并提供可靠的推断和决策依据。在工程领域,概率论与数理统计被用来分析和优化系统的可靠性和性能。 《概率论与数理统计笔记PDF》是一种学习资料,它提供了该学科的基本概念、定理和方法。这份笔记可以帮助读者理解概率论与数理统计的基本原理和应用,并提供实际案例和习题来加深对这些概念的掌握。通过阅读这份笔记,读者可以了解概率、随机变量、概率分布、统计推断等重要概念,以及它们在实际问题中的应用。 这份笔记的PDF格式使得它可以方便地在电子设备上阅读和存储。读者可以自由地选择在自己的电脑、平板电脑或手机上学习,随时随地进行学习。此外,PDF格式还允许读者进行注释和书签,方便他们标记和回顾重要内容。 总之,《概率论与数理统计笔记PDF》是一份有助于理解和掌握概率论与数理统计学习资料。它提供了基本的概念和方法,并通过实例和习题帮助读者巩固所学知识。同时,它的PDF格式也方便读者在电子设备上学习和存储。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值