学习笔记——概率论与数理统计(第二章)

学习来源:https://www.bilibili.com/video/av36206436/

第二章

2.1 随机变量的概念

定义: Ω \Omega Ω 是样本空间, X = X ( ω ) X=X(\omega) X=X(ω)是该样本空间上的实值函数(定义域是样本空间),X 称为随机变量,一般用 X , Y , Z , ξ , η , ς X,Y,Z,\xi,\eta,\varsigma XYZξης表示

{ ω ∣ X ( ω ) = a } 事件: { X = a } 事件 \{\omega|X(\omega)=a\}事件:\{X=a\}事件 {ωX(ω)=a}事件:{X=a}事件

  • 离散型:有限个/无限可列个
  • 非离散型:主要研究连续型

2.2

2.2.1 离散型随机变量及其概率分布

X的所有取值 x k ( k = 1 , 2 , ⋯   ) x_k(k=1,2,\cdots) xk(k=1,2,)(可列个)
P ( X = x k ) = P k P(X=x_k)=P_k P(X=xk)=Pk 概率函数/概率分布
概率分布表:
X 1 0 P 1 2 1 2 \begin{array}{ccc} {X}&{1}&{0}\\ \hline {P}&{\cfrac{1}{2}}&{\cfrac{1}{2}}\\ \end{array} XP121021

  • P k ≥ 0 P_k\geq 0 Pk0
  • ∑ P k = 1 \sum P_k=1 Pk=1

连续型随机变量及其概率密度函数
频数直方图和频率密度直方图

  1. 每个小长方形的面积等于该组的频率
  2. 所有小长方形的面积之和等于1
  3. 介于 x=a 和 x=b 之间的面积近似等于 ( a , b ] 之间的频率

定义:非负可积函数 f ( x ) , f ( x ) ≥ 0 , a ≤ b f ( x ),f(x)\geq 0,a\leq b f(x)f(x)0ab
P ( a < x ≤ b ) = ∫ a b f ( x ) d x \displaystyle P(a<x\leq b)=\int_a^bf(x)dx P(a<xb)=abf(x)dx
x:连续型随机变量
f ( x ) :x 的概率分布密度函数
记作 X ∼ f ( x ) X\sim f(x) Xf(x)
性质:

  • f ( x ) ≥ 0 f(x)\geq 0 f(x)0
  • ∫ − ∞ + ∞ f ( x ) = 1 \displaystyle\int_{-\infin}^{+\infin}f(x)=1 +f(x)=1
  • 连续型随机变量取个别值的概率为0

连续型 不考虑端点
P ( a ≤ x ≤ b ) = P ( a < x ≤ b ) = P ( a ≤ x < b ) = P ( a < x < b ) P(a\leq x\leq b)=P(a<x\leq b)=P(a\leq x<b)=P(a<x<b) P(axb)=P(a<xb)=P(ax<b)=P(a<x<b)

概率为0的事件未必是不可能事件
概率为1的事件未必是必然事件

X取 x 附近值的概率大小
lim ⁡ Δ x → 0 P ( x < X < x + Δ x ) Δ x = ∫ x x + Δ x f ( x ) d x Δ x \displaystyle\lim\limits_{\Delta x\to 0} \frac{P(x<X<x+\Delta x)}{\Delta x}=\frac{\displaystyle\int_x^{x+\Delta x}f(x)dx}{\Delta x} Δx0limΔxP(x<X<x+Δx)=Δxxx+Δxf(x)dx
P ( x < X < x + Δ x ) ≈ f ( x ) Δ x P(x<X<x+\Delta x)\approx f(x)\Delta x P(x<X<x+Δx)f(x)Δx

2.2.2 分布函数的定义

定义: F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(Xx)(普通的实函数)
X 取值不超过 x 的概率
x ∈ ( − ∞ , + ∞ ) , F ( x ) ∈ [ 0 , 1 ] x\in(-\infin,+\infin),F(x)\in[0,1] x(,+)F(x)[0,1]

离散型的分布函数

性质:

  1. 0 ≤ F ( x ) ≤ 1 , x ∈ ( − ∞ , + ∞ ) 0\leq F(x)\leq 1,x\in(-\infin,+\infin) 0F(x)1x(,+)
  2. F ( x ) 不减: ∀ x 1 < x 2 , F ( x 1 ) ≤ F ( x 2 ) \forall x_1<x_2,F(x_1)\leq F(x_2) x1<x2,F(x1)F(x2) lim ⁡ x → + ∞ F ( x ) = F ( + ∞ ) = 1 \lim\limits_{x\to +\infin}F(x)=F(+\infin)=1 x+limF(x)=F(+)=1 lim ⁡ x → − ∞ F ( x ) = F ( − ∞ ) = 0 \lim\limits_{x\to -\infin}F(x)=F(-\infin)=0 xlimF(x)=F()=0
  3. F ( x ) 是右连续的,至多有可列个间断点 lim ⁡ x → a + F ( x ) = F ( a ) \lim\limits_{x\to a^+}F(x)=F(a) xa+limF(x)=F(a)

公式:
P ( X ≤ a ) = F ( a ) P(X\leq a)=F(a) P(Xa)=F(a)
P ( X > a ) = 1 − F ( a ) P(X>a)=1-F(a) P(X>a)=1F(a)
P ( a < X ≤ b ) = P ( X ≤ b ) − P ( X ≤ a ) = F ( b ) − F ( a ) P(a<X\leq b)=P(X\leq b)-P(X\leq a)=F(b)-F(a) P(a<Xb)=P(Xb)P(Xa)=F(b)F(a)
P ( X = a ) = F ( a ) − F ( a − 0 ) P(X=a)=F(a)-F(a-0) P(X=a)=F(a)F(a0)
P ( a ≤ X ≤ b ) = F ( b ) − F ( a − 0 ) P(a\leq X\leq b)=F(b)-F(a-0) P(aXb)=F(b)F(a0)
P ( X < a ) = F ( a − 0 ) P(X<a)=F(a-0) P(X<a)=F(a0)
P ( X ≥ a ) = 1 − F ( a − 0 ) P(X\geq a)=1-F(a-0) P(Xa)=1F(a0)

连续型的分布函数

F ( x ) = P ( X ≥ x ) = ∫ − ∞ x f ( t ) d t F(x)=P(X\geq x)=\displaystyle\int_{-\infin}^xf(t)dt F(x)=P(Xx)=xf(t)dt

2.2.3 常见的分布

离散型常见分布

0-1分布
X 1 0 P p 1 − p \begin{array}{ccc} {X}&{1}&{0}\\ \hline {P}&{p}&{1-p}\\ \end{array} XP1p01p P ( X = k ) = p k ( 1 − p ) 1 − k P(X=k)=p^k(1-p)^{1-k} P(X=k)=pk(1p)1k(二项分布的特例)

  1. 有两种结果
  2. 试验只做一次

几何分布
P ( A ) = p
第 k 次首次发生,前 k − 1 次未发生
P ( X = k ) = ( 1 − p ) k − 1 p k , k = 0 , 1 , 2 , ⋯ P(X=k)=(1-p)^{k-1}p^k,k=0,1,2,\cdots P(X=k)=(1p)k1pk,k=0,1,2,
X ∼ G ( p ) X\sim G(p) XG(p)

二项分布
P(A)=p
n 次试验,发生了 k 次
P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , ⋯   , n P(X=k)=C_n^kp^k(1-p)^{n-k}, k=0,1,2,\cdots,n P(X=k)=Cnkpk(1p)nk,k=0,1,2,,n
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)
n = 1 时, P ( X = k ) = C 1 k p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=C_1^kp^k(1-p)^{1-k},k=0,1 P(X=k)=C1kpk(1p)1k,k=0,1(0-1分布)
最可能值:

  1. ( n + 1 ) p 不为整数,[(n + 1)p]达到最大值
  2. ( n + 1 ) p 为整数,( n + 1 ) p 和( n + 1 ) p + 1都是最大值

泊松分布
P ( X = k ) = λ k k ! e − λ , k = 1 , 2 , 3 , ⋯ P(X = k)= \cfrac{\lambda^k}{k!}e^{-\lambda},k = 1,2,3,\cdots P(X=k)=k!λkeλk=1,2,3,
λ > 0 \lambda>0 λ>0
X ∼ P ( λ ) X\sim P(\lambda) XP(λ)
电台收到的呼叫次数,公用设施(候车,收银台,一员挂号处)
计算方式:查表
二项分布可以用泊松分布近似
条件:n 较大,p 较小,np 适中( n ≥ 100 , n p ≤ 10 n\geq100,np\leq10 n100,np10

超几何分布
定义:N 个元素, N 1 N_1 N1 个属于第一类, N 2 N_2 N2 个属于第二类,取 n 个,X:n 个中属于第一类的个数
P ( X = k ) = C N 1 k C N 2 n − k C N n , k = 0 , 1 , 2 , ⋯   , min ⁡ { n , N 1 } \displaystyle P(X=k)=\frac{C_{N_1}^kC_{N_2}^{n-k}}{C_N^n},k=0,1,2,\cdots,\min\{n,N_1\} P(X=k)=CNnCN1kCN2nk,k=0,1,2,,min{n,N1}
超几何分布可以用来描述不放回抽样的实验
当 N 很大,n 相对 N 很小时, p = M N p=\frac{M}{N} p=NM 改变甚微,不放回抽样可以看作放回抽样
P ( X = k ) = C M k C N − M n − k C N n ≈ C n k p k ( 1 − p ) n − k \displaystyle P(X=k)=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}\approx C_n^kp^k(1-p)^{n-k} P(X=k)=CNnCMkCNMnkCnkpk(1p)nk

连续型常见分布

均匀分布
f ( x ) = { 1 b − a a ≤ x ≤ b 0 else f(x)= \begin{cases} \cfrac{1}{b - a}& \text{a ≤ x ≤ b}\\ 0& \text{else} \end{cases} f(x)= ba10a ≤ x ≤ belse

X ∼ U [ a , b ] X\sim U[a,b] XU[a,b]

分布函数:

F ( x ) = ∫ − ∞ x f ( t ) d t = { 1 x < a x − a b − a a ≤ x < b 1 x ≤ b F(x)=\displaystyle\int_{-\infin}^xf(t)dt= \begin{cases} 1& \text{x < a}\\ \cfrac{x - a}{b - a}& \text{a ≤ x < b}\\ 1& \text{x ≤ b} \end{cases} F(x)=xf(t)dt= 1baxa1x < aa ≤ x < bx ≤ b

X ∼ [ a , b ] , [ c , d ] ⊂ [ a , b ] X\sim[a,b],[c,d]\subset[a,b] X[a,b],[c,d][a,b]
P ( c ≤ x ≤ d ) = ∫ c d 1 b − a d t = d − c b − a P(c\leq x\leq d)=\displaystyle\int_c^d\frac{1}{b-a}dt=\frac{d-c}{b-a} P(cxd)=cdba1dt=badc

落在[a, b]上任意子区间的概率与子区间的长度成正比,与子区间的位置无关

指数分布
f ( x ) = { λ e − λ x x > 0 0 x ≤ 0 f(x)= \begin{cases} \lambda e^{-\lambda x} & \text{x > 0}\\ 0 & \text{x ≤ 0} \end{cases} f(x)={λeλx0x > 0x ≤ 0

λ > 0 , X ∼ E x p ( λ ) \lambda \gt 0, X\sim E_{xp}(\lambda) λ>0,XExp(λ)

F ( x ) = { 1 − e − λ x x > 0 0 x ≤ 0 F(x)= \begin{cases} 1 - e^{-\lambda x} & \text{x > 0}\\ 0 & \text{x ≤ 0} \end{cases} F(x)={1eλx0x > 0x ≤ 0

服务系统的服务时间,电话的通话时间,消耗性产品的寿命

正态分布
密度函数:
ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ \phi(x)=\displaystyle\frac{1}{\sqrt{2\pi}\sigma}e^{-\displaystyle\frac{(x-\mu)^2}{2\sigma^2}},-\infin<x<+\infin ϕ(x)=2π σ1e2σ2(xμ)2,<x<+

记作 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)

已知 ∫ − ∞ + ∞ e − x 2 d x \displaystyle\int_{-\infin}^{+\infin}e^{-x^2}dx +ex2dx(高数知识)

则有:

∫ − ∞ + ∞ Φ ( x ) d x = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 2 π σ ∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 d x = 2 σ 2 π σ ∫ − ∞ + ∞ e − ( x − μ 2 σ ) 2 d ( x − μ 2 σ ) = 1 π π = 1 \displaystyle\int_{-\infin}^{+\infin}\Phi(x)dx\\ =\displaystyle\int_{-\infin}^{+\infin}\displaystyle\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ =\displaystyle\frac{1}{\sqrt{2\pi}\sigma}\displaystyle\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ =\displaystyle\frac{\sqrt{2}\sigma}{\sqrt{2\pi}\sigma}\displaystyle\int_{-\infin}^{+\infin}e^{-(\frac{x-\mu}{\sqrt{2}\sigma})^2}d(\frac{x-\mu}{\sqrt{2}\sigma})\\ =\frac{1}{\sqrt{\pi}}\sqrt{\pi}\\ =1 +Φ(x)dx=+2π σ1e2σ2(xμ)2dx=2π σ1+e2σ2(xμ)2dx=2π σ2 σ+e(2 σxμ)2d(2 σxμ)=π 1π =1

分布函数:

Φ ( x ) = 1 2 π σ ∫ − ∞ x e − ( x − μ ) 2 2 σ 2 d t \Phi(x)=\displaystyle\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^xe^{-\frac{(x-\mu)^2}{2\sigma^2}}dt Φ(x)=2π σ1xe2σ2(xμ)2dt

性质:

  1. y = ϕ ( x ) y=\phi(x) y=ϕ(x) x = μ x=\mu x=μ 为对称轴
  2. x = μ x=\mu x=μ 时, ϕ ( x ) \phi(x) ϕ(x) 取最大值 1 2 π σ \frac{1}{\sqrt{2\pi}\sigma} 2π σ1
  3. y = ϕ ( x ) y=\phi(x) y=ϕ(x) 以 x 轴为渐近线, x = μ ± σ x=\mu\pm\sigma x=μ±σ 时有拐点
  4. σ σ \sigmaσ σσ 固定, μ \mu μ 变化:图像左右移动
  5. μ \mu μ 固定, σ \sigma σ 变化: σ \sigma σ变小,最高点上移(变陡); σ \sigma σ 变大,最高点下移(变缓)

标准正态分布:
μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1
ϕ 0 ( x ) = 1 2 π e − x 2 2 , − ∞ < x < + ∞ \phi_0(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}},-\infin<x<+\infin ϕ0(x)=2π 1e2x2,<x<+
Φ 0 ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \Phi_0(x)=\frac{1}{\sqrt{2\pi}}\displaystyle\int_{-\infin}^xe^{-\frac{t^2}{2}}dt Φ0(x)=2π 1xe2t2dt

性质:

y 轴为对称轴(偶函数)
ϕ 0 ( x ) = ϕ 0 ( − x ) \phi_0(x)=\phi_0(-x) ϕ0(x)=ϕ0(x)
Φ 0 ( − x ) = 1 − Φ 0 ( x ) \Phi_0(-x)=1-\Phi_0(x) Φ0(x)=1Φ0(x)

如果一个指标的影响因素有很多,每个因素起的作用都不太大,则这个指标服从正态分布

一般正态分布向标准正态分布转化:

ϕ ( x ) = 1 σ ϕ 0 ( x − μ σ ) \phi(x)=\displaystyle\frac{1}{\sigma}\phi_0(\frac{x-\mu}{\sigma}) ϕ(x)=σ1ϕ0(σxμ)
Φ ( x ) = Φ 0 ( x − μ σ ) \Phi(x)=\displaystyle\Phi_0(\frac{x-\mu}{\sigma}) Φ(x)=Φ0(σxμ)
X ∼ N ( μ , σ 2 ) X∼N(μ,σ^2) XN(μ,σ2)
P ( ∣ X − μ ∣ < σ ) = 0.6826 P(|X-\mu|<\sigma)=0.6826 P(Xμ<σ)=0.6826
P ( ∣ X − μ ∣ < 2 σ ) = 0.9544 P(|X-\mu|<2\sigma)=0.9544 P(Xμ<2σ)=0.9544
P ( ∣ X − μ ∣ < 3 σ ) = 0.9974 P(|X-\mu|<3\sigma)=0.9974 P(Xμ<3σ)=0.9974

3σ准则:
如果一个系统设计时服从正态分布,在检验时不符合 3 σ \sigma σ 准则,则不合格

X∼(0,1),给定 α ( 0 < α < 1 ) \alpha(0<\alpha<1) α(0<α<1),找到 u α u_\alpha uα 满足 P ( X > u α ) = α P(X>u_\alpha)=\alpha P(X>uα)=α u α u_\alpha uα 称为上 α \alpha α 分位数
u 0.05 = 1.645 u_{0.05}=1.645 u0.05=1.645
u 0.025 = 1.96 u_{0.025}=1.96 u0.025=1.96
u 0.01 = 2.33 u_{0.01}=2.33 u0.01=2.33

2.3

2.3.1 随机变量函数的分布

已知 X 是某分布,求Y = f ( X ) 是什么分布

离散型


已知:
X 7 8 9 10 P 0.1 0.3 0.4 0.2 \begin{array}{ccccc} {X}&{7}&{8}&{9}&{10}\\ \hline {P}&{0.1}&{0.3}&{0.4}&{0.2}\\ \end{array} XP70.180.390.4100.2
Y = 4X
则有:
Y 28 32 36 40 P 0.1 0.3 0.4 0.2 \begin{array}{ccccc} {Y}&{28}&{32}&{36}&{40}\\ \hline {P}&{0.1}&{0.3}&{0.4}&{0.2}\\ \end{array} YP280.1320.3360.4400.2

连续型

设 X 的密度函数是 f X ( x ) , y = g ( x ) , Y = g ( X ) f_X(x),y=g(x),Y=g(X) fX(x),y=g(x),Y=g(X)

  1. F Y ( x ) → F X ( x ) F_Y(x) →F_X (x) FY(x)FX(x)
  2. 两边求导: f Y ( x ) ← f X ( x ) f_Y(x)\larr f_X(x) fY(x)fX(x)
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值