利用高分辨率卫星图像在红树林中进行基于深度学习的单个树冠描绘【论文阅读与翻译】

摘要

  Mangrove forests are vulnerable ecosystems that require broad-scale monitoring. Various solutions based on satellite imagery have emerged for this purpose but still suffer from the lack of methods to accurately delineate individual tree crowns (ITCs). Within-stand variability in crown size and shape, crown clumping and fragmentation, and understory vegetation hamper the delineation in these ecosystems. To cope with these factors, the proposed method combines a deep learning-based enhancement of ITCs with a marker-controlled watershed segmentation algorithm. The MT-EDv3 neural network is employed to compute the normalized Euclidean distance of crown pixels to treetops and a Laplacian of Gaussian filter is applied to the resulting image to enhance crown borders before segmentation. The method was applied to WorldView imagery over four mangrove sites worldwide and compared to previously published methods using standardized metrics. Accurate detection  (Overall Accuracy ≥ 0.93 and Kappa ≥ 0.87) and area estimation (R2 ≥ 0.66, NRMSE ≤ 12%) of crowns was achieved for all sites using either the panchromatic band or a combination of the pan-sharpened visible-nearinfrared bands. Based on Precision, Recall, and F1-score, the proposed method outperformed previous watershed segmentation and software-based algorithms of crown delineation, as well as the Mask R-CNN segmentation framework. The viewing geometry of images and the forest heterogeneity were identified as important contributors to the delineation accuracy. This study is the first to achieve accurate delineation of ITCs in mangrove forests across sites, opening perspectives of applications to satellite-based monitoring. The method shows promising transferability to other very-high-resolution satellite sensors as well as to aerial and unmanned aerial vehicle imagery and could be improved by including more spectral information and LiDAR-derived canopy height models. 

红树林是脆弱的生态系统,需要大规模监测。为此目的,已经出现了基于卫星图像的各种解决方案,但仍然缺乏准确描绘单个树冠的方法。林内林冠大小和形状、林冠结块和破碎以及林下植被的变异阻碍了这些生态系统的圈定。为了应对这些因素,该方法将基于深度学习的ITCs增强与标记控制的分水岭分割算法相结合。利用MT-EDv3神经网络计算树冠像素到树梢的归一化欧氏距离,并在分割前对得到的图像进行拉普拉斯高斯滤波以增强树冠边界。该方法应用于全球四个红树林地点的WorldView图像,并与先前发布的使用标准化指标的方法进行了比较。采用全色波段或泛锐化的可见-近红外波段组合对所有地点的冠进行了准确的检测(OA≥0.93,Kappa≥0.87)和面积估计(R2≥0.66,NRMSE≤12%)。基于精度、召回率和f1分数,该方法优于以往的分水岭分割和基于软件的冠状圈定算法,以及Mask R-CNN分割框架。图像的几何形状和森林的异质性是影响圈定精度的重要因素。这项研究首次在红树林中实现了跨站点的ITCs精确描述,为基于卫星的监测应用开辟了前景。该方法显示出有希望转移到其他高分辨率卫星传感器以及空中和无人机图像,并且可以通过包含更多的光谱信息和激光雷达衍生的冠层高度模型来改进。

一、Introduction

红树林是一种湿地生态系统,分布在热带和亚热带海岸线和河口的潮间带(Lewis et al ., 2011;Wang et al, 2019)。它们由茂密的森林形成,这些森林庇护着各种各样的生物,并提供20多种生态服务和45种天然产品(Barbier, 2016;贺加斯,2015;Lewis et al, 2011;Vo et al, 2012)。因为它们在陆地和海洋环境之间的过渡区定居,红树林通过限制陆地污染物的运输和作为抵御海浪的天然屏障,充当“沿海肾脏”(Duke, 2016)。更重要的是,它们的碳产量(高达700 Tg c .年¶1)与热带森林相当,使红树林生态系统成为全球蓝色碳库最有价值的贡献者之一(Alongi, 2012)。


尽管目前118个国家的红树林覆盖面积超过13.7万平方公里,但由于自然和人为因素,自20世纪末以来,近35%的红树林消失了(Bunting等,2018;Duke et al, 2007;Thomas et al, 2017)。洪水、风暴和飓风是红树林损失的主要驱动因素,但根据《2021年世界红树林状况报告》(Spalding和Leal, 2021年),大约60%的减少可归因于人类活动。特别是,根据Makowski和Finkl(2018)的研究,人为造成的红树林损失分为四类:资源开采(如木材、石油、医药),空间竞争(水产养殖、城市和工业发展)、人为改变(淡水资源转移)和污染(石油泄漏、废水)以及管理失败(即规划政策和生态系统评估的失败)。此外,海平面上升、全球变暖、遗传隔离和害虫正在成为红树林的严重威胁,红树林现在是世界上最受关注的生态系统之一,尽管它们只占全球森林覆盖率的不到0.5% (Duke, 2016;Krauss et al, 2014;Ward et al, 2016)。因此,监测红树林对于长期维持其宝贵的服务至关重要。

        

由于红树林形成了密集的树冠,而野外通道有限,因此遥感(RS)被证明是大规模研究这些森林的可靠解决方案。根据最近的评论(Heumann, 2011;Wang et al ., 2019),过去65年的研究主要集中在森林面积制图、物种分类、生物物理生化参数检索和碳储量估算等方面。最近,健康评估和压力监测应用已经出现,因为更高的空间和光谱分辨率可以获得更精细的树木特征信息(Hati等人,2020;Kumar et al, 2020)。被动机载和卫星光学遥感主要用于监测红树林,包括低(MODIS)、中(Landsat、Sentinel- 2)、高和超高(SPOT、QuickBird、WorldView)空间分辨率图像(Lagomasino et al ., 2014;Manna and Raychaudhuri, 2020;Pastor-Guzman et al, 2018;Valderrama-Landeros et al, 2018)。

       此外,大量研究强调使用激光雷达作为红树林测绘和监测的宝贵工具(Li et al ., 2021;张,2008)。非常高分辨率(VHR)图像最适合绘制红树林物种、物候和准确检索冠层生物化学,因为它需要事先单独识别树木(Aval等人,2018;Ferreira et al, 2018)。由于树木对压力和干扰的反应在不同树种之间和同一树种的不同个体之间存在差异,因此树冠个体划分在森林健康评估中更为重要。因此,自动ITC划定有利于空中和卫星监测森林。然而,关于红树林的记录仍然很少,这不是由于缺乏兴趣,而主要是因为在红树林中实现准确描绘树冠通常比在其他森林类型中更具挑战性

ITC描述包括将来自同一树冠的像素分组到单个图像对象中。通常通过将分割算法应用于航空和卫星光学图像,或激光雷达衍生的冠层高度模型(CHMs)来实现(Bunting和Lucas, 2006;Chemura et al ., 2015;约翰森等人,2020;Xu et al ., 2021;Yun et al, 2021)。准确描绘ITCs的一个关键要求是像素尺寸必须小于表冠尺寸,因此通常建议使用米(1-2米)到亚米的分辨率。尽管对于划分itc的最佳方法尚未达成共识,但分水岭、山谷跟随和区域增长分割是最广泛使用的算法(Ke和Quackenbush, 2011)。它们通常在寒带和温带森林中表现良好,有明亮的树梢,有规则形状的树冠,树冠羞怯(即树冠间空间)。相反,树冠可分性在红树林中非常具有挑战性,因为(i)林下植被(红树林树苗、灌木和盐沼植被)填充了树冠间的空间,(ii)树冠的破碎化;即,一个树冠分解成几个子树冠(多茎树),以及(iii)来自两棵或更多树的树冠的结块和重叠(Li et al, 2021;Yin and Wang, 2019)。此外,红树林树木的发育——因此树冠形态——因物种而异,并受到生长条件(盐度、养分有效性、污染)和光照有效性的影响,从而导致单个森林斑块内树冠之间的高度变异(Krauss等人,2008;Lewis et al, 2011;Vovides et al, 2018)。所有这些原因都解释了与其他森林类型相比,标准ITC划定方法在红树林中的表现较低。

        一种可能的方法是在分割前对图像进行预处理来增强冠状边缘。波段选择、降维和图像滤波是实现这一目标的最有效方法(Ke和Quackenbush, 2011;Wagner et al, 2018)。
或者,最近在基于深度学习的ITC描绘方面取得了进展,通过卷积神经网络(cnn)分割图像或增强树冠内的树顶检测和像素均匀性。
例如,Martins等人(2021)通过将多任务CNN应用于RGB航空图像来划定城市树木的树冠和分类物种,而Braga等人(2020)和Hao等人(2021)分别应用He等人(2017)开发的Mask RCNN进行大西洋雨林和人工林的树木检测和ITC划定。然而,目前还没有提议将其应用于红树林。更广泛地说,在过去的几十年里,红树林国际贸易中心的划定几乎没有取得进展。据我们所知,为此目的只提出了几种特定地点的方法。Wannasiri等人(2013)通过对泰国激光雷达数据应用可变窗口滤波,以87%的准确率描绘了红树林。Yin和Wang(2019)通过使用未命名飞行器(UAV)对中国红树林的激光雷达衍生CHM进行分割,达到了46%的准确率。最近,Qiu等人(2019)成功地应用了同样的方法。尽管基于激光雷达的ITC描述很有前途,但它仍然局限于小规模应用。正如几位作者所建议的那样,它将受益于与高分辨率卫星图像的结合。Heenkenda et al .(2015)。通过在多分辨率分割算法中实施结合全色、红色和NIR1 (765-901 nm)波段的局部最大生长方法,利用WorldView-2图像对澳大利亚红树林进行了92%的描绘,准确率达到了92%。Kamal等人(2016)也将后者应用于印度尼西亚和澳大利亚红树林的WorldView-2图像分割,但没有对所产生的圈定进行准确性评估。在Hirata等人(2014)的研究中,QuickBird图像被分割以描绘均匀的红树林斑块,而不是泰国的itc。
因此,尽管红树林的保护正在成为全世界日益关注的问题,但尽管有VHR卫星图像,仍然缺乏跨地点、在树木水平和大规模监测这些森林的解决办法。
        本研究探讨了将基于深度学习的方法应用于VHR卫星图像,在大尺度上圈定红树林itc的可行性。更具体地说,本文讨论了下列问题:(i) VHR卫星图像是否适合准确地划定各个地点的红树林国际贸易中心?(ii)哪些光谱波段最适合实现这样的描绘?(iii)拟议的方法与常用的ITC划定方法相比表现如何?我们在全球不同地区的四种红树林中测试了我们的方法,这些红树林在树木配置(丛树型、边界型和孤立型)、物种组成、树冠大小和形状以及林下植被密度方面都有所不同。手稿组织如下。第2节首先描述了选定的研究地点和使用的卫星图像。
然后,对ITC的划定方法进行了全面的描述。本节最后详细介绍了该方法的性能评估。第3节描述了四个研究地点的结果,并将提出的方法的结果与其他ITC划定方法进行了比较。最后,在第4节中讨论了不准确的来源和应用前景。

二、Materials and methods 

2.1Study sites (研究地点)

本研究选取了四个红树林林分(图1,另见补充图S1)。

第一个是巴西Bertioga海峡(23◦54 ' 09.3 " S, 46◦12 ' 18.4 " W)附近约330公顷的退化边缘红树林。在这个地点只发现了三种“真正的”红树林物种,下层植被由稀疏到茂密的树苗组成(lamarelli et al, 1997)。在这片森林中,树高很少超过10米(Soares和Schaeffer-Novelli, 2005),并且经常观察到树冠破碎和结块。

第二个地点位于大沼泽地国家公园(美国)。一个密集的公园内(北纬25◦21′45.7”,西经81◦04′10.0”)选择了110公顷的河流红树林,树高从6到24米不等。该红树林包括以下物种:红色(Rhizophora mangle (L.)),黑色(Avicennia germinans (L.))和白色(Laguncularia racemosa (L.))红树林,以及纽扣红树林(Conocarpus erectus L.) (Castaneda-Moya等人,2011)。

第三个红树林位于澳大利亚布里斯班附近的摩顿湾(27◦21 ' 55.9 " S, 153◦08 ' 36.5 " E)。这片115公顷的森林以白色红树林(Avicennia marina (Forssk))为主。Vierh.),但在该地区发现了六种不同的物种(Sun et al ., 2014)。植被高度从2米灌木到30米乔木,形成密集的斑块,树冠重叠(Kamal et al, 2014)。
最后一个地点是位于Port-Gentil海港附近的加蓬河口的一片红树林(90公顷)(0◦47 ' 02.4 " S, 8◦57 ' 39.6 " E)。该地区是全球最高的红树的家园,高达63米,主要是红树品种总状红树(Rhizophora racemosa)。(Aldous等,2021;Simard et al, 2019)。如上所述,这四个立地在上冠层形态和林下植被层密度上存在差异。因此,它们非常适合评估所提出的ITC描述方法的稳健性。

图1所示。WorldView-3(巴西、美国、澳大利亚)和WorldView-4(加蓬)卫星图像所看到的研究地点概览。(上图:泛锐化RGB真彩色合成图像;下图:全色图像)。所选红树林的界限用红色多边形标出。(另见补充页。S1)。(对于图例中有关颜色的解释,请参阅本文的网页版本。)

2.2 WorldView imagery(世界观图像)

建议使用VHR成像来实现对红树林ITCs的准确描绘。在本研究中,我们使用了MAXAR (Westminster, CO, USA)提供的level-2A(表面反射率)WorldView-3和-4产品。这些图像是在2016年8月至2019年8月期间在四个研究地点无云条件下获取的,最低点视角范围为11.5至17◦(见补充标签)。S1)。根据多光谱仪器的不同,图像包括4个(WorldView-4)到8个(WorldView-3)波段,在1.2 m空间分辨率的可见近红外(VNIR)光谱域和0.3 m空间分辨率的全色波段(PAN)。为了提高图像的分辨率,使用ENVI®(L3Harris Geospatial, Boulder, CO, USA)中可用的最近邻扩散(NNDiffuse)算法对近红外波段进行泛锐化(Sun et al ., 2014)。NNDiffuse基于光谱混合分析概念,并假设泛锐化图像像素的光谱可以使用其相邻像素的光谱响应来建模。在我们的案例中,它被证明比其他常用的泛锐化算法更适合(见补充图S2)。NNDiffuse需要用户设置一些参数,如像素大小比(多光谱和PAN波段之间)、空间平滑度和强度平滑度。在本例中,我们设置像素大小比为4,空间平滑度为2.48,强度平滑度动态调整为局部相似度。得到的泛锐化图像像素大小为0.3 m, WorldView-3为8个波段,WorldView-4为4个波段(图1)。因此,本文提出的方法同时利用了光谱和极高空间信息来描绘itc。

2.3Individual tree crown dataset (单个树冠数据集)

基于深度学习的itc描述通常需要大量识别良好的树冠的数据集。为了创建这个数据集,我们在四个研究地点(每个地点500个)手动划定了总共2000个红树林ITCs,选择了不同树冠大小(<50到>4000像素)和形状(如紧凑、松散、圆形、椭圆形)的孤立树、成团树和边界树。圈定是由一个人使用PAN和VNIR波段交替进行,以清楚地区分冠状边界,并尽量减少误差在得到的冠状多边形。对于每个研究点,人工划定的ITCs随机分为70%用于训练(n = 350个ITCs)和30%用于测试(n = 150个ITCs)。冠面积的分布以及训练和测试ITCs的冠统计量如图2所示。对于ITC多边形的完整视图,读者参考补充图S3-S6。四个地点之间的itc在面积和形状上存在很大差异(图2),这使得开发有效的跨地点划定方法具有挑战性。

 图2所示。在四个研究地点上,人工划定的列车(n = 350)和测试(n = 150)数据集的冠区分布。对于每个数据集,条形图表示给定冠区的冠数。冠面积以0.3 m像素为单位给出。

2.4 Proposed method(方法)

所提出的方法依赖于两个连续的步骤:(1)冠可分性增强和(2)ITCs的自动圈定(图3)。
第一步,使用多任务CNN生成距离图(图3a-b),其中像素表示到ITC的距离边界。然后,对距离图应用拉普拉斯高斯(LoG)滤波器来增强树冠边界和树顶(图3c)。在第二步中,使用标记控制的分水岭分割算法自动划定itc(图3d)。在下面的部分中,我们将详细介绍所建议的方法。

 图3所示。在Bertioga红树林站点上获取的WorldView-3全色图像(像素大小= 0.3 m)上提出的单个树冠(ITC)描绘方法的示例。(a)原始全色图像,其中不能清楚地看到国际中心。(b) MT-EDv3卷积神经网络得到的距离图(详见图4)。在此图像中,像素值表示到ITC边界的距离。(c)应用拉普拉斯高斯滤波(LoG)增强树冠边界和树梢的结果。(d)标记控制分水岭分割算法的ITC划分结果。黄色多边形和红色方块分别表示分割的单个树冠和树梢。(对于图例中有关颜色的解释,请参阅本文的网页版本。)

2.4.1Crown separability enhancement(冠层可分性增强)

冠可分性增强的第一级包括生成距离图像,其中像素值表示到ITC边界的距离。为了获得它,我们使用了La Rosa等人提出的基于DeepLabv3+的多任务编码器-解码器(MT-EDv3)网络(2021)。该网络被开发用于执行ITC划定和物种分类,并成功用于城市和森林环境中的树种制图(Martins等,2021;La Rosa et al, 2021)。MT-EDv3是一个多任务网络,旨在从输入图像中联合执行语义分割和距离图估计。具体来说,该网络包括一个共享编码器,它学习两个任务的相关表示,以及两个学习任务特定表示的解码器。共享编码器基于ResNet网络(He et al, 2016),而语义分割任务的解码器基于DeepLabv3+架构(Chen et al, 2018)。负责估计距离图的解码器使用传统卷积和双线性上采样实现。利用焦点损失函数训练语义分割分支,选取均方误差作为距离图估计分支的损失函数。La Rosa等人(2021)强调了使用距离图进行ITC检测和形状描绘的潜力。由于红树林物种分类不在我们的研究范围内,因此我们将语义分割分支作为次要任务来提高距离图估计的泛化程度。

        使用三幅输入图像训练mat - edv3:(i) PAN锐化VNIR图像的PAN波段或nir -红-绿波段组合(图4a), (ii)训练ITC多边形(n = 350 crowns per site, Section 2.3)的矢量-栅格转换获得的参考二值图像(图4b), (iii)计算每个像素与训练ITC边界之间的归一化欧氏距离变换获得的参考距离图(图4c)。正如Martins等人(2021)和La Rosa等人(2021)所描述的那样,该网络使用部分损失原理(Lin等人,2017)进行训练,其中包括仅使用标注的ITCs中的像素(图4b中的白色像素)计算损失函数并忽略未知区域(图4b中的黑色像素)。这种技术减少了需要大量带注释的ITC样本来获得良好性能的需要。使用参考距离图进行训练后,将MT-EDv3应用于整个PAN和VNIR图像,以生成包含红树林中所有潜在ITCs的距离图(图4d)。有关网络架构和超参数配置的更多信息,我们建议读者参考Martins等人(2021)。


图4所示。MT-EDv3网络在WorldView-3 PAN图像上的应用实例。从原始图像(a)中手动勾画出训练冠,生成参考标记图像(b)(白色:训练冠,黑色:背景)和参考距离图像(c)。然后,所有这些图像用于训练MT-EDv3网络,然后将其应用于整个原始图像,生成最终距离图像(d)。 

训练过程首先提取20000个图像补丁(18000个用于训练,2000个用于验证),确保至少10%的补丁包含参考ITC。对于每个站点,我们根据站点的平均树冠面积选择不同的斑块大小(图2)。因此,Bertioga的斑块大小设置为64 × 64像素,Everglades和Brisbane的斑块大小设置为128 × 128像素,Port-Gentil的斑块大小设置为256 × 256像素。因此,根据不同的地点,冠面积平均占斑块面积的1.5 - 3.4%,因此每个斑块包含几个冠,包括最大的冠(Port-Gentil >4000像素)。我们分别使用PAN波段和VNIR颜色组成来训练模型。

        

通过随机旋转(90度,180度和270度)以及对补丁图像的水平和垂直翻转,通过数据增强改进了网络泛化。为避免过拟合,我们将失分率设置为0.65。随机梯度下降优化器(Murphy, 2012)的动量为0.9,初始学习率为0.05。该模型训练了20个epoch, batch size为8。在每个epoch提取一组新的训练和验证补丁。使用重叠率分别为10%、30%和50%的滑动窗口进行预测,并计算三个输出的平均值。MT-EDv3网络在一台配备两个Intel®Xeon Silver处理器(2.40 GHz)、128 GB RAM和一个NVIDIA®RTX 2070 SUPER显卡(8gb内存)的计算机上进行训练,大约需要1-5小时完成(20个epoch),具体取决于整个森林范围。代码是使用TensorFlow和CUDA®11.4在Python语言中实现的,可以根据作者的合理要求提供。  

        由MT-EDv3网络生成的距离图由预测的距离图块合并而成,使用二维高斯滤波器对重建的距离图进行平滑,σ值设置为1.5 (Bertioga和Everglades)或2 (Brisbane和Port-Gentil)。选择这些值是因为它们产生了一个无缝的距离图,同时保留了冠的边缘。在这个阶段,红树林可以很容易地在图像上识别出来。然而,皇冠边界的可分离性仍然不能令人满意,需要进一步改进,以实现准确划定国际贸易界线。为此,我们对平滑的距离图像应用LoG滤波器(Marr and Hildreth, 1980)。在之前的研究中,边缘检测滤波器已经被证明与对比冠状边界相关(Pouliot et al, 2002;Wagner等人,2018;Wang et al ., 2004)。LoG过滤器首先应用高斯平滑从图像中去除噪声,这已经在我们上面提到的情况下完成了。然后,该算法在光滑后的图像二阶导数中找到零交叉点,这些交叉点对应于冠边。在这里,LoG应用于内核大小为9 × 9像素的平滑距离图像。初步实验表明,较小的核尺寸并没有增强冠边缘和非冠像素之间的差异,而较大的核尺寸则倾向于合并相邻冠的边缘。得到的边缘增强图像用于描绘ITCs(图3c-d)。

2.4.2  Automatic delineation of ITCs(自动圈定ITCs)

红树林ITCs从边缘自动划定,使用标记控制的分水岭分割在四个研究地点上增强图像(图3c) (Huang等,2018;Tong et al ., 2021)。分水岭分割通常会由于图像噪声而导致过度分割,在我们的例子中,这会导致单个红树林树冠分裂成几个亚树冠。标记控制的分水岭分割通过施加“流域出口”的数量和位置来解决这个问题,这里用树梢表示。在这里,假设树梢位于树冠附近或中心(离树冠边缘最远,即归一化欧氏距离≈1),通过对高斯平滑距离图像应用局部最大值检测滤波器来检测树梢。最后,通过对log滤波后的图像应用分水岭分割算法,将检测到的树梢作为标记,将增强的树冠边界作为“分水岭脊线”来实现ITCs的划分(图3d)。该方法分别应用于PAN和VNIR (nir -红-绿)图像,并评估ITC描绘的准确性,如下节所述。

2.5  Assessment(评估)

根据Yin和Wang(2016)的建议,对每个地点分别进行了多标准评估,涉及多个互补指标。第一个评估级别包括确定该方法是否成功区分冠区和非冠区,后者包括光秃秃的区域、冠间空间、水域和林下植被(Braga et al, 2020)。为此,在每个研究地点随机生成1000个验证点,其中一半落在树冠像素中,另一半落在非树冠像素中,后者包括裸地、树冠间空间、水域和林下植被。然后通过混淆矩阵将验证点与预测的ITCs进行比较。测定了预测的总体精度(Overall Accuracy, OA)和Cohen’s Kappa系数(Cohen, 1968;Story and Congalton, 1986)。在这里,假阴性表明视觉上解释的冠像素与任何预测的冠不匹配(遗漏错误)。相反,假阳性对应于与预测冠相交的非冠像素(委托误差)。

        我们比较了真实的(人工绘制的)和预测的ITCs之间的冠交点。对于给定的真冠,我们计算相交的预测冠的数量。对所有真实冠(每个位点n = 150个ITCs)重复该过程,并按照Wagner等人(2018a)的描述确定交叉频率(一个、两个或三个以上的预测冠)。如果大多数的真冠都被预测得很好,它们将与一个预测的冠相交。相反,如果真冠被过度分割,它们将与两个或更多的预测冠相交。

        从所有与真冠相交的预测冠中,我们保留了那些与真冠共享至少50%相交/联合(IoU)的冠,这些冠通常被认为是正确描绘的(Tochon et al, 2015)。IoU定义为一个真实的和预测的冠的交集(或重叠)对应的边界框面积,除以真实的和预测的冠边界框面积的和(或并)(以像素为单位)。对于每一个IoU > 50%的ITC,我们计算了Precision、Recall和f1得分(Xu et al, 2021)。Precision定义为相交区域的边界框与预测冠的边界框之比。相反,召回率被定义为两者之间的比率与真冠相交区域的边界框。两者都对冠面积的低估和高估非常敏感,接近1的值表示准确的描绘。f1分数结合了准确率和召回率。读者可以参考Braga等人(2020)的文章,了解借据、召回率和精度计算的示例。这些指标是为每个符合条件的预测冠计算的,并在整个研究地点取平均值。

        我们还对所描述的ITCs进行了更全面的评估。首先,使用非参数Kolmogorov-Smirnov检验比较了真实和预测冠面积的分布。根据本检验,没有显著差异(P≥0.05)表明真实与预测的ITCs面积吻合良好。为了补充这一指标,我们通过计算决定系数R2,即均方根误差(RMSE)来量化预测的质量:

2.6  Comparison with other methods(与其他方法比较)

        本研究中开发的基于深度学习的ITCs描述与先前描述的三种基于卫星图像的方法进行了比较,并应用于红树林。这些方法在我们的研究地点进行了测试,使用0.3 m PAN和/或VNIR图像,如原文所述。这里的目标是强调深度学习如何克服以前的红树林描绘方法的一些局限性,而不管森林的位置如何。
        第一种方法是简单的标记控制分水岭分割(Biswas et al, 2020;Tong et al ., 2021)。然而,与我们的方法不同的是,没有对图像进行冠的预增强。在PAN图像上使用局部最大滤波器检测树顶,并用于如上所述的分水岭分割。将我们的方法的结果与分水岭算法的结果进行比较,使我们能够评估MT-EDv3对红树林ITC划定的贡献。

        基于Heenkenda等人(2015)。,在recognition®Developer (Trimble Geospatial, Sunnyvale, CA, USA)中对图像进行区域增长分割,结合PAN、红色和近红外波段。该方法检测PAN和NIR波段的局部最大值,这些波段被认为是树顶。然后,将树顶作为生长区域的种子,进行迭代的区域生长过程。该过程由一个参数控制,该参数定义为树顶像素的近红外值与相邻像素的近红外值之比。因此,该方法假设树梢在近红外波段比树冠的其他部分更亮。最后,根据植被指数(NDVI)均值和红带标准差去除假itc。最后,将软件中实现的基于形态学的平滑程序应用于剩余的ITCs。

        最后选择用于比较的方法涉及一种自下而上的区域合并算法,称为多分辨率分割。在以前的工作中,这种方法已被广泛用于从卫星图像中描绘itc,包括在红树林中(Johansen等人,2020;Kamal et al, 2016;Singh et al, 2015)。简而言之,该算法将一个或多个波段组合在一起,以创建具有最小异质性的图像对象(即ITCs)。首先创建单像素对象,然后合并形成更大的对象。它们的大小由比例参数控制。此外,分割由形状参数和紧凑度参数控制,形状参数决定了光谱信息对分割的影响(形状值高=反射率影响小),紧凑度参数定义为ITC边界与面积的比值。在本研究中,测试的尺度值范围为10 - 100,增量为10,形状固定为0.1(反射率影响强),密实度范围为0.3 - 0.7,增量为0.1。形状值的广泛范围被定义为解释研究地点之间树冠大小的可变性。对原始的4张(WorldView-4)和8张(WorldView-3) VNIR泛锐化图像进行多分辨率分割。绿色、红色和近红外波段的权重高于其他波段。根据f1评分选择最优的参数集。

        最后,将我们的方法与另一种基于深度学习的分割框架进行比较,称为区域卷积神经网络(Mask R-CNN) (He et al, 2017)。尽管该框架从未应用于红树林,但它在其他森林类型中实现了对itc的准确描绘(Braga等人,2020;Hao等,2021;Yu et al, 2022)。Mask R-CNN首先检测目标物体,绘制其边界框,然后对包围在该边界框内的物体进行分割。对Mask R-CNN框架及其在森林遥感中的应用(包括ITC划定)的全面描述可以在Chiang等人(2020)中找到。本研究采用与MT-EDv3网络相同的patch大小、数据增强策略和输入参数(epoch、batch size等),利用PAN + VNIR复合图像对红树林ITCs进行检测和圈定。掩模R-CNN的应用在ArcGIS®Pro (ESRI, Redlands, United States)中进行,其中包括适应RS数据的原始框架的忠实实现。最后,将这四种方法(标记控制分水岭、区域生长、多分辨率分割和Mask R-CNN)与本文提出的方法在精度、召回率和人工划定的ITCs测试集上计算的f1分数方面进行比较。

3  Results(结果)

        本研究中开发的基于深度学习的ITCs描述与先前描述的三种基于卫星图像的方法进行了比较,并应用于红树林。这些方法在我们的研究地点进行了测试,使用0.3 m PAN和/或VNIR图像,如原文所述

3.1  Crown recognition(树冠识别)

        如表1所示,通过该方法获得的ITCs圈定成功地将冠区与非冠区区分开来。所有地点的OA≥0.93,Kappa系数≥0.87,表明视觉生成的树冠与预测的树冠吻合良好。也就是说,在四个研究地点的500个冠状或非冠状像素中,有超过470个被正确标记(参见补充标签中的混淆矩阵)。S2)。由于PAN和VNIR结果之间观察到的微小差异,因此无法对最合适的波段提出建议。然而,将该方法应用于PAN图像会导致更多的假阳性。相比之下,vnir衍生的描述在大沼泽布里斯班和让蒂港的红树林。地导致了更多的假阴性,

                         

 表1通过比较视觉生成的验证点和ITC描述模型使用PAN和VNIR波段的预测,计算出四个研究地点的总体精度(OA)和Kappa系数。相应的混淆矩阵在补充选项卡中详细说明(S2中)。

通常,在卫星图像的ITC划定中,假阴性归因于对冠面积的低估,即冠像素不包括在冠段中,而假阳性则归因于对冠面积的高估,即在冠段中包含了非冠像素。在红树林中,假阳性可能归因于树冠间空间的林下植被(红树林树苗、盐沼植被)与树冠边界的区分不佳,因此模糊了树冠轮廓。这种现象不太可能在近红外图像中观察到,因为近红外波段对红树林幼苗和成熟树木具有高度的区别。尽管在这里观察到,使用我们的方法,假阳性和阴性仍然很小,因为MT-EDv3网络结合LoG滤波器确保准确区分冠和非冠区域,同时增强冠轮廓。这四个研究地点在许多方面(树冠大小和形状、林下植被等)都存在差异,因此得到的精确映射凸显了所提出方法的稳健性及其在红树林间的可转移性

3.2  Crown intersection(树冠相交)

        虽然第3.1节中提到的指标反映了树冠映射的整体质量,但树冠相交提供了更好的分割定量评估。图5和图6表明,预测的冠形多边形与人工绘制的冠形多边形匹配得很好,后者的92%由单个多边形相交(即一个预测冠与单个真冠相交,也称为一对一关系(Yin and Wang, 2016))。然而,必须注意的是,性能在不同的地点和根据在分割中利用的光谱波段有很大的不同。Bertioga PAN图像的分割效果最好,因为8%的真树冠与两个或更多的预测树冠相交(图5)。使用VNIR图像对该站点的分割结果没有改善,因为预测树冠与单个树冠相交的百分比从92%降至68%(图6)。Everglades红树林的情况也是如此,树冠平均约为树冠的三倍。

        相反,布里斯班样地的分割质量不受条带数量的影响,平均树冠面积介于Bertioga和Everglades之间。在Port-Gentil,大部分冠的面积超过1000像素,使用VNIR图像可以略微改善分割,达到80%的单冠相交。在PAN和VNIR图像中,所有位点都观察到两个或多个预测冠与真实冠相交的过度分割,其比例各不相同。然而,它仍然低于32%,表明根据以其他森林类型的WorldView图像为中心的类似工作进行了准确的分割(Braga et al, 2020;Wagner et al, 2018)。        

        基于第3.1节和第3.2节的结果,本文所提出的方法可以成功地识别和分割红树林林分间的ITCs。然而,评估圈定的结果不能局限于分类和交叉度量,因为它们不能提供估计的冠区信息。例如,该方法预测的识别良好(真正)、分割良好(单多边形相交)的冠可能比相应的真冠更小或更大。因此,建议进行更定量的评价。

图5所示。仅使用PAN波段的四个研究点的真冠多边形与预测冠多边形相交的频率 

图6所示。利用近红外波段(nir -红-绿)对四个研究点的真冠多边形与预测冠多边形相交的频率。 

3.3  Crown area estimation(树冠面积估算)

         考虑到预测冠的IoU≥50%,该方法可准确估算冠面积。PAN和VNIR图像的结果分别如图7和图8所示。基于Kolmogorov-Smirnov检验,无论使用PAN波段还是VNIR波段,任何地点的真实集与预测集之间的冠面积分布均无显著差异(P≥0.05)。在不同的地点和不同的树冠面积,圈定的准确性差别很大。计算的真实冠面积与预测冠面积之间的R2范围为0.54 ~ 0.97。仅考虑Bertioga、Brisbane和Port-Gentil红树林时,R2值大于0.75,NRMSE不超过10%。当使用VNIR图像作为MT-EDv3网络的输入时,来自Port-Gentil的红树林显示出最佳的树冠估计,只有3%的NRMSE。然而,仅使用PAN也观察到准确的预测(R2 = 0.83, RMSE = 8%)。在沼泽地也观察到类似的趋势,近红外波段合理地改善了圈定。
        相反,使用Bertioga和Brisbane的原始PAN图像更准确地描绘了ITCs, R2值≥0.87,小于NRMSE的8%。然而,对于这些站点,在超过250和500像素的特定阈值时,分别观察到对真实冠面积的低估。图7和图8所示的预测残差分布证实了这一点。

 图7所示。(上一行)真实和预测冠面积的分布,(中一行)真实与预测冠面积的对比,(下一行)仅使用PAN波段的四个研究地点的测量冠和预测冠之间的面积差(以像素单位)分布。这里只考虑与真实冠有IoU相交≥50%的预测冠。

 图8所示。(上行)使用VNIR波段(nir -红-绿)的四个研究地点的真实冠面积和预测冠面积的分布,(中行)真实冠面积与预测冠面积的对比,以及(下行)测量冠与预测冠之间的面积差(以像素单位)分布。这里只考虑与真实冠有IoU相交≥50%的预测冠。(对于图例中有关颜色的解释,请参阅本文的网页版本。)拉萨尔等人

3.4  Precision, Recall, and F1-score(精度,召回率和f1得分)

         为了更好地评估ITCs的描述,考虑到所有可能的情况(切分不足、切分过度和切分准确),我们分析了Precision、Recall和f1分数。使用我们的方法,根据作为输入的频带,所有站点的真实和预测红树林ITCs之间计算的平均Precision和Recall都超过0.83(表2)。对于单个站点,这两个指标之间没有实质性差异,表明没有普遍存在分割不足或过度分割。f1评分> 0.80,进一步突出了圈定的准确性。在这方面,结果证实了第3.3节所作的观察。将该方法应用于VNIR图像,使Port-Gentil的f1评分从0.83提高到0.93,Everglades的f1评分从0.81提高到0.85。相反,与Bertioga和Brisbane的VNIR相比,PAN图像的f1评分略高(+0.02至+0.04)。因此,虽然避免过分割和欠分割是ITCs圈定的难点,但该方法可以准确识别和圈定四个研究点红树林的ITCs

3.5  Comparison with other methods(与其他方法比较)

         表2总结了不同方法获得的ITC圈定结果。在Precision, Recall和F1-score方面,该方法优于先前发表的标记控制分水岭,区域增长和多分辨率分割方法以及Mask R-CNN。将标记控制分水岭分割方法应用于原始PAN图像会导致ITCs的不准确划分,无论在哪个位置,平均Precision和Recall值都≤0.66。分水岭分割通常会导致图像的过度分割,这里表示为将单个真冠分割成几个更小的冠多边形。从原始PAN图像中区分红树林树冠是非常具有挑战性的,因此解释了使用该方法观察到的较差性能。如表2所示,该方法增强了树冠的边界,与单独使用分水岭分割算法相比,减轻了分水岭分割算法的圈定。区域生长合并(多分辨率)分割效果较好,Bertioga、Brisbane和Port-Gentil的f1得分≥0.70。因为这些算法利用更多的波段,它们可以准确地区分树冠、树冠和非树冠像素。然而,当树冠可分性受到限制时,它们会受到严重的限制;或当观察到树冠面积的高变异性时。根据我们的观察,区域生长算法非常适合于描绘孤立的树木,但往往通过合并成团的树冠和在树冠段中考虑林下植被的像素来产生大的线段。此外,我们注意到多分辨率分割保证了分割冠的均匀性-由形状和紧实度参数控制-但需要固定的尺度参数作为输入。因此,该算法不能处理在沼泽地观测到的冠区变化。它导致小冠的分割不足(高尺度值)或大冠的分割过度(低尺度值)。R-CNN口罩也有同样的限制。它的性能优于以前发表的方法,但仍然比我们基于mt - edv3的方法差得多,特别是在树冠面积高变异性的地点。因此,以前发表的方法都不适合准确和跨地点地描绘红树林ITCs。我们的方法表明,通过从背景中分离树冠并增强树冠边缘,可以在使用卫星图像的红树林中准确地实现ITC描绘,而不管树木的配置(孤立的、块状的、边缘的)和树冠面积和形状如何。

4  Discussion

         遥感界对基于温带、热带、寒带和城市森林的卫星图像划定国际森林界线的做法给予了高度评价(Aval等,2018;Dalponte et al, 2014;Tochon et al, 2015;Wagner et al, 2018)。为了解决红树林的堆积问题,我们提出了一种方法,该方法可以部分地克服树冠聚集和破碎化问题,同时最大限度地减少林下植被对树冠可分性的影响。新开发的方法成功地描绘了大范围的树冠。在本节中,我们将讨论不准确的来源和在这项工作中确定的可能的改进,这些应该在进一步的研究中得到解决。

4.1 Sources of inaccuracies(不准确的来源)

4.1.1 Viewing geometry(不准确的来源)

         在红树林国际中心圈定中观察到的不准确性可归因于两个不同的因素:图像的观测几何形状和森林的结构异质性。树冠圈定确实受图像的观察几何形状的影响很大。特别是,非底部视图提高了时间分辨率,但它通过掩盖树冠边界和树冠间空间,彻底损害了树顶检测和树冠划分(Kempf et al, 2021)。远最低点观测的几何和辐射测量结果仍然缺乏文献记录(Ke和Quackenbush, 2011)。尽管如此,作者们还是同意这一点在一定角度以上-这取决于传感器和森林特征,由于遮挡和阴影,itc的描绘变得非常具有挑战性(Gougeon, 1999;Ke and Quackenbush, 2011;Kempf et al, 2021)。卫星图像的这种局限性已经在各种林分和星载传感器(如WorldView、QuickBird和IKONOS)中普遍观察到(Ferreira等人,2021;Ke et al, 2010;Song et al ., 2010)。在我们的案例中,研究地点之间观看几何形状的可变性可能有助于在低离最低点视图的地点获得更好的性能。这一点得到了Bertioga、Brisbane和Port-Gentil图像(均位于离最低点11.5至13.4◦之间)比Everglades图像(离最低点17◦)更好的tc描述的证实。为了定量评估off-nadir观察对结果描绘的影响,我们使用在Bertioga站点同一区域获得的另外两张WorldView-2和¶3 PAN图像进行了敏感性分析(图9)。虽然本研究中使用的12.1◦off-nadir图像证明适合准确描绘ITCs(平均f1得分= 0.85),但在24.9◦off-nadir应用相同的方法会大大恶化描绘的质量(平均f1得分= 0.71)。在更高的角度(26.5◦)和使用WorldView-2图像与较粗的分辨率(0.52米),冠变得几乎无法区分,因此很差的描绘(平均f1得分= 0.45)。尽管这些图像是在11个月内获得的,但由于树木的生长,冠的真实形状和大小可能没有发生实质性变化(De Alvarenga et al, 2017)。因此,在这些图像之间观察到的大部分差异可归因于观看几何形状的差异。

图9所示。观测几何对红树林ITCs可探测性和可分离性的影响。这些图像显示了从WorldView-2和-3 PAN图像中以不同的非最低点角度看到的Bertioga红树林的相同子集。

4.1.2 Forest structural heterogeneity(森林结构异质性)

         

        在物种丰富度低、树木年龄均匀、间距均匀的同质林分(如人工林)中,树冠圈定非常容易(Hornero et al ., 2020;约翰森等人,2020;Wagner et al, 2019)。然而,在红树林中,由于物种分带、环境梯度、林下植被建立以及自然和人为扰动,观察到高度的林内异质性(Amir和Duke, 2019;Kamal et al, 2015;Li et al ., 2021;Vovides et al, 2018)。这种异质性导致冠的大小、形状和结块或隔离程度不同,影响了圈定的准确性。

        树木结构指的是树木在森林中的位置及其与周围树木的接近程度(如丛状、孤立的、边缘的),这可能解释了这里观察到的红树林ITCs圈定的一些不准确之处。例如,布里斯班红树林在向陆地和向海的海岸线上有较高比例的孤立树木(见图10中的例子)。由于这些树木与森林的其他部分隔离,并且被裸露的沉积物或水包围,因此在PAN和VNIR图像中可以检测到它们的树冠,从而解释了波段选择对该站点分割质量的影响相对较小。

        在红树林中,树木丛生表现为树冠边缘的重叠,这使得ITC的描绘特别困难。在全色和近红外图像中,边缘像素通常不如树顶像素明亮。因此,MT-EDv3网络将低归一化欧几里得距离值归一化到重叠边缘像素,而对树顶像素预测高值。然后,LoG过滤器进一步增强了簇冠的可分离性,与以前的方法不同,允许对部分重叠的itc进行单独区分。在Bertioga和Everglades的红树林中,广泛观察到不同个体的树冠结块。这种现象导致了冠间空间的缩小——在PAN图像中有时是一到两个像素宽,而在1.2 m VNIR图像的泛锐化中可能会丢失。再加上大的离最低点角度,这可能解释了与其他地点相比,在Everglades观察到的精度较低。根据实地观察,Clough等人(1997)定义的单个个体的多个亚冠的聚集,并在红树林中,树木丛生表现为树冠边缘的重叠,这使得ITC的描绘特别困难。在全色和近红外图像中,边缘像素通常不如树顶像素明亮。因此,MT-EDv3网络将低归一化欧几里得距离值归一化到重叠边缘像素,而对树顶像素预测高值。然后,LoG过滤器进一步增强了簇冠的可分离性,与以前的方法不同,允许对部分重叠的itc进行单独区分。在Bertioga和Everglades的红树林中,广泛观察到不同个体的树冠结块。这种现象导致了冠间空间的缩小——在PAN图像中有时是一到两个像素宽,而在1.2 m VNIR图像的泛锐化中可能会丢失。再加上大的离最低点角度,这可能解释了与其他地点相比,在Everglades观察到的精度较低。根据实地观察,Clough等人(1997)定义的单个个体的多个亚冠的聚集,并在补充图S7 -也有助于红树林的空间异质性。这些亚树冠的特点是彼此之间的间距很小,而与周围树冠之间的间距较大(图10)。在MT-EDv3网络中使用适当的补丁大小,它们在距离图像中显示为唯一的冠,避免了过度分割。相反,这种异质性影响了其他区域生长和合并算法的性能,限制了它们对红树林的适用性。

        处理树冠面积和形状的变化是ITC圈定的关键挑战。许多方法需要固定的参数来控制分割面积、紧凑度或圆度(如多分辨率分割)(Johansen et al, 2020;Kamal等人,2016)),这使得很难准确地描绘出形状不规则、树冠大小不一的红树林,正如我们在研究地点所观察到的那样。同样的限制也适用于Mask R-CNN,它对itc的大小和形状的变化高度敏感(Ferreira et al, 2020)。我们的方法通过在一组具有不同特征的代表性树冠上训练MT-EDv3网络来克服这一问题,因此考虑了树冠内的异质性。因此,建立反映森林异质性的大型训练ITCs数据集对于确保准确的自动描绘至关重要。值得注意的是,由于红树林的特定特征,人工圈定容易出错。G.冠丛)和图像相关因素(如观察和照明几何)。然而,通过光解译进行人工描述是获得具有高度不同树冠结构特性的多个遥远地点的大型和可靠的itc数据集(在我们的案例中n = 2000)的唯一方法。当使用无监督方法(如多分辨率分割)时,这种耗时且要求严格的步骤是不必要的,使它们更快,更容易应用。然而,正如这里强调的那样,这些方法在不同的地点并不可靠,特别是在异质性高的森林中。除了树龄和环境因素外,树冠特征还由物种遗传决定,因此物种丰富度高导致森林异质性更强(Li et al ., 2019)。虽然量化物种丰富度对树冠划分的影响超出了本研究的范围,但我们提供了红树林物种模式与树冠划分准确性之间可能存在联系的证据。在Bertioga或Brisbane,红树林物种形成了一个明显的地带性,因此一些物种主要在森林的边缘或向陆地部分被发现(Flores de Santiago, 2013;Kamal et al, 2015)。在这种情况下,由于物种以均匀的单位组织,空间异质性降低,因此从PAN中获得了准确的树冠圈定,而添加近红外波段的好处很小。然而,在Everglades和Port-Gentil,混合红树林占主导地位,导致森林结构更复杂(Ruiz et al, 2018),因此使用VNIR图像代替PAN有利于不同物种相邻树冠的描绘,因为绿色、红色和近红外波段中包含的光谱信息有助于更好地区分树冠边界(见补充图S8)。

        作为森林异质性的另一个贡献者,林下植被是许多森林生态系统中树冠划分中最麻烦的因素之一(Campbell et al ., 2020;Fassnacht et al ., 2016;黄等人,2018;Wagner et al, 2018)。生长在冠层正下方的植被对植被圈定的影响很小,因为其被冠层覆盖。然而,低地层植被填充了树冠边界之间的空间,从而模仿树冠聚集,导致分割不足。林下植被在物种组成上可能与上层冠层不同,使其在多光谱图像中被掩盖。当林下植被与构成上冠层的植被相似时,这种区分变得极具挑战性,因为与主动光学遥感不同,被动多光谱成像不提供观测植被的高度信息(Li et al ., 2021;金陶等人,2019)。在我们的案例中,这种被动图像的限制导致了ITCs描述的不准确。为了说明这一点,我们调查了Bertioga红树林的几个地点,对比了下层植被的密度(图11)。林下植被与上层林冠由相同的物种组成,但在立地内观察到重要的异质性。裸露的沉积物区域(图11a)使冠间空间呈现为深色像素,而稀疏到茂密的红树林树苗(图11b-c)则导致绿暗混合。最后,由于树冠间空间填充,树冠圈定的大部分不准确可能归因于被年轻红树林覆盖的区域(2 - 3米高,图11d)。由于这种解释是基于实地观察,进一步的研究应定量地解决林下植被及其特征(如物种、高度、密度)对国际贸易中心圈定的影响。       

                     

 图10所示。用所提出的方法对不同构型的红树林进行树冠圈定的成功实例。从左到右:PAN视图、RGB视图、RGB视图+自动圈定冠多边形。为了图形化方便,移除周围圈定的冠多边形。

 图11所示。巴西Bertioga红树林林下植被的空间变异。(a)裸露的沉积物,(b)稀疏和(c)茂密的红树林树苗,(d)红树幼树(2 - 3米高)。

因此,处理森林结构异质性是红树林树冠圈定的关键挑战。研究结果表明,冠度增强有助于应对冠形和冠面积的变化,同时限制林下植被的影响。由于我们的方法并非没有缺陷,因此可以通过多种方式对其进行改进,例如,将多光谱图像与其他RS数据源耦合。此外,我们的方法转移到其他无源光学传感器的可移植性应评估的操作应用的最终用户。下面几节将讨论这些要点

4.2 Generalization of the method(方法的推广)

         由于热带和新热带地区红树林繁茂,因此获得高质量的卫星图像具有挑战性,因为云层覆盖的可能性很大。因此,确保方法可转移到广泛的卫星传感器,对于最大限度地提高图像可用性至关重要。由于该方法只需要PAN信道或几个近红外波段,因此可以应用于其他卫星传感器

符合推荐的空间分辨率(像素尺寸≤1 m)。作为一般规则,作者指出空间分辨率必须小于冠尺寸才能实现准确的ITC划定(Ke和Quackenbush, 2011a)。IKONOS、QuickBird(档案)、GeoEye-1和Pleiades等卫星传感器提供空间分辨率为0.46至0.82米的全色图像,并已被证明与描绘其他森林生态系统中的热带雨林相关(Greenberg等人,2005;Pu and Landry, 2020;Song et al ., 2010),因此它们可能非常适合使用我们的方法在红树林中做同样的事情。还应该考虑其他RS平台。历史上,航空图像被广泛用于描绘树冠(Ke和Quackenbush, 2011a)。从这个意义上说,我们的方法可以很容易地转换为具有非常高空间分辨率(像素尺寸<1 m)的全色或多光谱航空图像。同样,无人机携带的PAN和多光谱相机显示出巨大的潜力,因为它们可以在适当的时间以高达厘米尺度的分辨率调查特定区域(Lassalle, 2021;Torresan et al, 2017)。这些相机现在已经广泛商业化,而且数量很多其中包括推荐应用我们的方法的光谱波段。几位作者倾向于在红树林中使用无人机图像而不是卫星图像(Ruwaimana等人,2018),但无人机似乎不适合大尺度制图,因为单个红树林可以轻松覆盖100公顷(见第2.1节)。因此,它们应该被视为卫星图像的补充,而不是替代方案,因为它们可以用来,例如,为卫星应用手动勾勒出itc的轮廓,并帮助区分冠状植被和非冠状植被。然而,这将意味着无人机和卫星图像之间的准确配准,就像在其他生态系统中所做的那样(Johansen等人,2020;Miranda et al, 2020)。

        正如我们在研究中观察到的那样,增加光谱信息也可能有利于红树林ITCs的描绘(参见第3节中PAN和VNIR的结果)。首先,通过引入短波红外(SWIR)波段,该波段最近被证明与增强红树林像元识别相关(Baloloy等,2020;Jia et al, 2019)。然后,通过提高图像的光谱分辨率。ITC描述可以从高光谱图像中受益,通过细化方法中利用的最佳光谱波段,因为一些波段可能有助于克服第4.1节中提到的局限性。然而,目前和即将到来的高光谱卫星传感器仅限于8到30米的空间分辨率,因此还没有可以想象的应用。相反,机载和基于无人机的高光谱图像同时满足高空间和光谱分辨率,应该在方法改进中加以考虑。

        VHR卫星图像并非旨在解决红树林ITC划定中的所有挑战。如第4.1节所述,仅使用被动光学遥感无法克服一些限制。即,即使满足最佳条件(低离底角、低异质性和无林下植被),描绘非常小的冠(即宽度低于像素大小)仍然非常困难。将卫星图像与高点密度的无人机或机载激光雷达数据所获得的chm相结合,可以显著提高圈定精度。Heenkenda et al .(2015)。发现将CHM与WorldView-2图像相结合只能略微改善红树林ITC的描绘(+ OA的3%)。相反,基于无人机的激光雷达数据可以提供有关冠层高度和结构的详细信息,并且在单独利用时可以获得良好的描绘(Yin和Wang, 2019)。因此,在我们的方法中,可以将从无人机获得的激光雷达衍生的CHM作为一层添加到MT-EDv3网络中,就像最近尝试用于红树林生物量估算一样(Qiu et al, 2019)。然而,这意味着图像的复杂配准,并且限制了UAV图像的区域覆盖。因此,在此基础上确定了几种方法来改善红树林ITCs的描绘,并应在未来的研究中加以解决。在目前的版本中,我们的方法仍然是可靠的,并为监测红树林开辟了令人鼓舞的前景。

4.3 Perspectives for mangrove monitoring(红树林监测展望)         

        树木是红树林生态系统中棱角分明的基石。然而,它们很容易受到自然和人为的压力和干扰(Duke et al, 2007;Spalding and Leal, 2021)。基于卫星的监测是红树林保护的一个重要组成部分,因为红树林覆盖面积大,但实地进入有限。在这方面,许多应用证明了对ITC进行描述的必要性。首先,它在评估干扰对红树林的影响方面起着至关重要的作用,因为它涉及到绘制大面积树木枯死的地图。例如,雷击和石油泄漏会导致红树林冠层出现巨大空隙,其特征是被健康树木包围的光秃秃的区域(Amir和Duke, 2019)(参见补充图S9中的示例)。这些缝隙在树冠闭合的过程中经历了几个阶段,它们的树冠密度和面积都有所不同。虽然使用激光雷达衍生的CHMs可以准确地检测红树林间隙,但它仍然不适合监测它们的恢复(Zhang, 2008)。由于具有非常高的空间分辨率,我们的研究方法可以通过隔离非冠区来检测最近的间隙,并通过估计多年来冠区在间隙内的变化来评估间隙的后期恢复阶段。

        树冠圈定也是基于对象的分类(例如,物种、健康)和基于卫星的研究中的生物物理生化参数检索的第一个关键步骤(Campbell等人,2020;Fang等人,2018;Ferreira et al, 2019;霍等人,2021;Schafer et al, 2016;Wagner et al, 2018)。到目前为止,红树林的应用仍然局限于基于像素或不准确的基于对象的映射(Cao等人,2018;Kamal et al, 2016)。Wang等人(2019b)特别指出,缺乏红树林应力评估的研究,这可能与缺乏准确、广泛的方法来描绘ITCs有关。由于我们的方法,可以对大型红树林进行准确的描绘,为许多基于信息通信技术的应用铺平了道路。像MT-EDv3网络这样的cnn允许同时执行多个任务,包括树冠圈定和物种分类或树高估计(Ferreira等人,2021;Hao等,2021;Martins et al, 2021)。这些应用可以改进我们的方法,允许在大范围内进行物种测绘,冠层生物化学检索,蓝碳储量估算和压力评估,以改善对红树林的监测,实现这些宝贵的生态系统的保护目标。

5 Conclusion(结论)         

        这项研究首次提出了一种利用VHR卫星图像在红树林中划定itc的实用方法。该方法使用深度学习模型和LoG过滤器来增强树冠可分离性,从而通过标记控制的分水岭分割来实现树冠的自动划分。该方法成功地在4个具有不同特征的原型红树林上描绘了ITCs,同时限制了诸如林下植被和树冠结块等混杂人工制品的影响。它优于先前发表的基于卫星图像和另一种广泛使用的深度学习分割框架的方法。我们的方法很好地适应了WorldView图像,并显示出应用于其他VHR卫星传感器和航空和无人机图像的良好潜力。红树林生态系统受到越来越多的关注,促使开发新的基于rs的解决方案来监测这些生态系统。由于ITC描绘对红树林制图至关重要,我们的方法可以作为许多应用的基础,从树木计数到健康评估。

Appendix A. Supplementary data     附录A.补充数据

       本文的补充资料可在t https://doi.org/10.1016/j.isprsjprs.2022.05.002. 网站上找到

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值