【信号与系统】(十四)傅里叶变换与频域分析——周期信号的频谱及特点

周期信号的频谱及特点

在这里插入图片描述
频谱——信号的一种新的表示方法

1 周期信号的频谱

频谱:周期信号分解后,各分量的幅度和相位对于频率的变化,分别为幅度谱和相位谱

频谱图:将幅度和相位分量用一定高度的直线表示;其中幅度谱图反映了信号不同频率分量的大小。

三角函数形式分解
在这里插入图片描述

虚指数函数形式分解
在这里插入图片描述

在这里插入图片描述
引入虚指数形式(双边谱)是为了计算上的方便。

2 单边谱和双边谱的关系

在这里插入图片描述
在这里插入图片描述

  • ∣ F n ∣ |F_n| Fn n n n的偶函数,双边幅度谱的谱线高度为单边幅度谱的一半,且关于纵轴对称;而直流分量值不变。
  • ϕ n ϕ_n ϕn n n n的奇函数,双边相位谱可以由单边相位谱直接关于零点奇对称。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 周期信号频谱的特点

s i n x = e j x − e − j x 2 j sinx=\frac{e^{jx}-e^{-jx}}{2j} sinx=2jejxejx
S a ( x ) = s i n ( x ) x Sa(x)=\frac{sin(x)}{x} Sa(x)=xsin(x)

注意脉冲的非0即1特性,数字信号由0-1表示或变形的,可以从矩形脉冲引申过去。
在这里插入图片描述
正弦等于0的点:零点

零点与零点间隔为 2 π τ \frac{2\pi}{\tau} τ2π,谱线与谱线的间隔为 2 π T \frac{2\pi}{T} T2π

在这里插入图片描述
在这里插入图片描述

周期信号频谱的特点:
(1) 离散性:以基频 Ω Ω Ω为间隔的若干离散谱线组成;
(2) 谐波性:谱线仅含有基频 Ω Ω Ω的整数倍分量 ω \omega ω是基波, n ω n\omega nω是谐波;
(3) 收敛性:整体趋势减小。

谱线结构与波形参数的关系:
在这里插入图片描述

分析: T T T不变, τ \tau τ变小

  • 谱线间隔 Ω \Omega Ω不变
  • 幅度下降
  • 零点右移,两零点间的谱线数目( T / τ T/\tau T/τ) 增加 。

在这里插入图片描述

结论: T T T不变, τ \tau τ变小

  • 时域压缩(脉冲变窄),频域展宽(频带变宽)

在这里插入图片描述

τ \tau τ不变, T ↑ T↑ T,幅度 ↓ ↓ ,间隔 Ω ↓ \Omega↓ Ω,频谱变密。

T → ∞ T→∞ T时,谱线间隔 Ω = 2 π / T → 0 \Omega=2π/T →0 Ω=2π/T0,谱线幅度 → 0 →0 0周期信号的离散频谱过渡为非周期信号的连续频谱
T → ∞ T→∞ T:得到信号一个周期内的部分,其他在无穷大以外,所以是非周期的。

收敛性分析:
在这里插入图片描述

(1) 振幅是收敛的:信号的能量主要集中在低频分量中。

(2) 收敛具有不同速度:信号越连续光滑,幅度谱衰减越快。

在这里插入图片描述

低频反映信号的主要信息,高频表现细节

在这里插入图片描述

4 周期信号的功率

周期信号一般是功率信号,其平均功率为
在这里插入图片描述
这是帕斯瓦尔定理在傅里叶级数情况下的具体体现;

含义:
周期信号平均功率=直流和谐波分量平均功率之和。

表明:
对于周期信号,在时域中求得的信号功率与在频域中求得的信号功率相等。

频带宽度

在满足一定失真条件下,信号可以用某段频率范围的信号来表示,此频率范围称为频带宽度

在这里插入图片描述

由频谱的收敛性可知,信号的功率集中在低频段。

在这里插入图片描述
(1) 一般把第一个零点作为信号的频带宽度。记为:
在这里插入图片描述

宽度与脉宽成反比

(2) 对于一般周期信号,将幅度下降为 1 10 ∣ F n ∣ m a x \frac{1}{10}|F_n|_{max} 101Fnmax的频率区间定义为频带宽度。

(3) 系统的通频带>信号的带宽,才能不失真。
在这里插入图片描述

ps:为了限制信号的幅频失真,就要求电路对信号所包含的各种频率成分都不要过分抑制,或者说要求电路容许一定频率范围的信号都通过,这个一定的频率范围称为电路的通频带。一般规定:在电路的通用谐振曲线上,比值不小于0.707的频率范围是放大电路的通频带,并以BW表示。

《工程信号与系统》作者:郭宝龙等
中国大学MOOC:信号与系统 ,西安电子科技大学,郭宝龙,朱娟娟

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值