20210620 Successive projection algorithm(连续投影法)

https://en.wikipedia.org/wiki/Projections_onto_convex_sets

在这里插入图片描述
Algorithm
The POCS algorithm solves the following problem:
find x ∈ R n x \in \mathbb{R}^{n} \quad xRn such that x ∈ C ∩ D x \in C \cap D xCD
where C C C and D D D are closed convex sets.
To use the POCS algorithm, one must know how to project onto the sets C C C and D D D separately. The algorithm starts with an arbitrary value for x 0 x_{0} x0 and then generates the sequence
x k + 1 = P C ( P D ( x k ) ) x_{k+1}=\mathcal{P}_{C}\left(\mathcal{P}_{D}\left(x_{k}\right)\right) xk+1=PC(PD(xk))
The simplicity of the algorithm explains some of its popularity. If the intersection of C C C and D D D is non-empty, then the sequence generated by the algorithm will converge to some point in this intersection.
Unlike Dykstra’s projection algorithm, the solution need not be a projection onto the intersection C C C and D D D.

在这里插入图片描述
Related algorithms
The method of averaged projections is quite similar. For the case of two closed convex sets C C C and D D D, it proceeds by
x k + 1 = 1 2 ( P C ( x k ) + P D ( x k ) ) x_{k+1}=\frac{1}{2}\left(\mathcal{P}_{C}\left(x_{k}\right)+\mathcal{P}_{D}\left(x_{k}\right)\right) xk+1=21(PC(xk)+PD(xk))
It has long been known to converge globally. [ 8 ] { }^{[8]} [8] Furthermore, the method is easy to generalize to more than two sets; some convergence results for this case are in. [ 9 ] ^{[9]} [9]

The averaged projections method can be reformulated as alternating projections method using a standard trick. Consider the set
E = { ( x , y ) : x ∈ C , y ∈ D } E=\{(x, y): x \in C, y \in D\} E={(x,y):xC,yD}
which is defined in the product space R n × R n \mathbb{R}^{n} \times \mathbb{R}^{n} Rn×Rn. Then define another set, also in the product
space:
F = { ( x , y ) : x ∈ R n , y ∈ R n , x = y } . F=\left\{(x, y): x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, x=y\right\} . F={(x,y):xRn,yRn,x=y}.
Thus finding C ∩ D C \cap D CD is equivalent to finding E ∩ F E \cap F EF.

To find a point in E ∩ F E \cap F EF, use the alternating projection method. The projection of a vector ( x , y ) (x, y) (x,y) onto the set F F F is given by ( x + y , x + y ) / 2 (x+y, x+y) / 2 (x+y,x+y)/2. Hence
( x k + 1 , y k + 1 ) = P F ( P E ( ( x k , y k ) ) ) = P F ( ( P C x k , P D y k ) ) = 1 2 ( P C ( x k ) + P D ( y k ) , ( P C ( x k ) + P D ( y k ) ) \left(x_{k+1}, y_{k+1}\right)=\mathcal{P}_{F}\left(\mathcal{P}_{E}\left(\left(x_{k}, y_{k}\right)\right)\right)=\mathcal{P}_{F}\left(\left(\mathcal{P}_{C} x_{k}, \mathcal{P}_{D} y_{k}\right)\right)=\frac{1}{2}\left(\mathcal{P}_{C}\left(x_{k}\right)+\mathcal{P}_{D}\left(y_{k}\right),\left(\mathcal{P}_{C}\left(x_{k}\right)+\mathcal{P}_{D}\left(y_{k}\right)\right)\right. (xk+1,yk+1)=PF(PE((xk,yk)))=PF((PCxk,PDyk))=21(PC(xk)+PD(yk),(PC(xk)+PD(yk))

Since x k + 1 = y k + 1 x_{k+1}=y_{k+1} xk+1=yk+1 and assuming x 0 = y 0 x_{0}=y_{0} x0=y0, then x j = y j x_{j}=y_{j} xj=yj for all j ≥ 0 j \geq 0 j0, and hence we can simplify the iteration to x k + 1 = 1 2 ( P C ( x k ) + P D ( x k ) ) x_{k+1}=\frac{1}{2}\left(\mathcal{P}_{C}\left(x_{k}\right)+\mathcal{P}_{D}\left(x_{k}\right)\right) xk+1=21(PC(xk)+PD(xk)).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值